§ 导数的几何意义班级 使用时间:一.学习目标通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率理解导数的概念并会运用概念求导数二.课前准备 1. 曲线上的连线称为曲线的割线斜率 2. 设函数在附近有定义当自变量在附近改变时函数值也相应地改变 如果当 时平均变化
导数的几何意义 教学目的 1.使学生理解导数的几何意义并会用求导数的方法求切线的斜率和切线方程利用导数求法线方程. 2.通过揭示割线与切线之间的内在联系对学生进行辩证唯物主义的教育. 教学重点 理解导数的几何意义是本节的重点. 教学过程 一复习提问 1.导数的定义是什么求导数的三个步骤是什么求函数yx2在x2处的导数. 2.怎样定义曲线C在点P的切线(即切线的定义) 在
导数的几何意义导数的几何意义:函数在某点处的导数的几何意义就是在曲线上该点处切线的斜率即:曲线在处的切线的斜率.相应地切线方程为:题型一:求切线斜率切线方程(已知切点或横坐标时)求切线方程的步骤:(1)先求出函数在处的导数即(2)根据点斜式写出切线的方程.1.曲线在点处的切线方程为 .2.曲线在处的切线的斜率为 .3. 曲线在点处的切线的倾斜角为
§3.1.2 复数的几何意义Created with an evaluation copy of Aspose.Words. To discover the full versions of our APIs please visit: :products.asposewordsPAGE 6Created with an ev
导数的几何意义1【河南省郑州市2014届高中毕业年级第一次质量预测试题】已知曲线的一条切线的斜率为2,则切点的横坐标为( )A.3B.2 C.1 D. 2【福建省福州一中2014届高三下学期开学】已知函数的图象在处的切线 斜率为(),且当时,其图象经过,则( )A B. C. D.3【成都七中2014届高三下期入学考试数学(文)】给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称函数
PAGE PAGE 3§1.1.3导数的几何意义教学目标1.了解平均变化率与割线斜率之间的关系2.理解曲线的切线的概念3.通过函数的图像直观地理解导数的几何意义并会用导数的几何意义解题教学重点:曲线的切线的概念切线的斜率导数的几何意义 教学难点:导数的几何意义.教学过程:一.创设情景(一)平均变化率割线的斜率(二)瞬时速度导数我们知道导数表示函数y=f(x)在x=x0处的瞬时变化率
《复数的几何意义》教案导学案 威海四中教材分析:复数的几何意义是学生在学完复数后的一节课为研究复数加减法做了准备本节课主要是让学生了解即可学情分析:学生已经学过实数的几何意义实数的绝对值的意义所以通过类比学生很容易理解复数的几何意义三教学目标:1.能够类比实数的几何意义说出复数几何意义2.会利用几何意义求复数的模3.能够说出共轭复数的概念四教学重难点: 重点:复数的几何
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级教学目标: (1)知识与能力目标:通过理解导数的概念探求导数的几何意义并会求曲线的切线方程了解导函数的概念培养学生运用极限思想去思考问题的能力以及建立数学模型的能力(2)过程与方法目标:通过实例引入师生共同探究培养学生提出分析解决问题的能力提高学生逻辑思维和抽象概括能力(3)情感态度与
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级3.导数的定义4.点斜式直线方程:1.平均变化率2.瞬时变化率复 习 回 顾2如果一个函数的瞬时变化率处处为0则这个函数的图象是( )A.圆 B.抛物线 C.椭圆 D.直线xoyy=f(x)一曲线的切线P(x0y0)Q(x1y1)当自变量从x0变化到x1时相应的函数值
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级导数的几何意义复习提问导数的定义y=f (x)在 x=x0的导数导数 f ?(x0)表示函数 f (x)在x=x0 处的瞬时变化率反映函数f (x)在 x=x0附近的变化情况.那么导数 f ?(x0)的几何意义是什么呢当点Pn(xn f (xn))(n=1234)沿着曲线 f(x)趋近于点P(x0 f (x0)) 时割线 PP
违法有害信息,请在下方选择原因提交举报