1.平面向量基本定理如果e1、e2是同一平面内的,那么对于这一平面内的任意向量a,,,我们把不共线的向量e1、e2叫做表示这一平面内所有向量的.此定理告诉我们:平面内任意一个向量总可以用两个不共线的向量表示.两个不共线向量一组基底有且只有一对实数λ1、λ2使a=λ1e1+λ2e23.正交分解把一个向量分解为两个,叫做把向量正交分解.∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角 a与b垂直
#
#
请同学们认真看课本P98-99的内容注意以下几点:1如何用向量 的坐标来表示 以及两向量夹角的余弦值2学习例1例2例3是如何运用向量夹角公式的3如何求直线的方向向量4学例4如何运用方向向量求两直线的夹角 10分钟后开始检测比谁能运用本节知识做对检测题(自学过程中如有疑问可举手问老师也可同桌小声讨论)
请同学们认真看课本P98-99的内容注意以下几点:1如何用向量 的坐标来表示 以及两向量夹角的余弦值2学习例1例2例3是如何运用向量夹角公式的3如何求直线的方向向量4学例4如何运用方向向量求两直线的夹角 10分钟后开始检测比谁能运用本节知识做对检测题(自学过程中如有疑问可举手问老师也可同桌小声讨论)
#
合作探究·提素养栏目导航栏目导航当堂达标·固双基自主预习·探新知课时分层作业第六章 平面向量及其应用 6.3 平面向量基本定理及坐标表示6.3.5 平面向量数量积的坐标表示自主探新知预习合作提素养探究平面向量数量积的坐标运算向量模的坐标表示向量的夹角与垂直问题当堂固双基达标课时分层作业点击右图进入…Thank you for watching
#
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级重点难点重点:①掌握平面向量基本定理会进行向量的正交分解②理解平面向量坐标的概念掌握平面向量的坐标运算难点:向量的正交分解与平面向量基本定理知识归纳1.平面向量基本定理(1)如果e1e2是同一平面内的两个不共线向量那么对于这一平面内的任一向量a有且只有一对实数a1a2使得a.我们把不共线的向量e1e2叫做表示这个平面内所有向量
平面向量数量积的坐标表示 t _blank 教学目标1.正确理解掌握两个向量数量积的坐标表示方法能通过两个向量的坐标求出这两个向量的数量积.2.掌握两个向量垂直的坐标条件能运用这一条件去判断两个向量垂直.3.能运用两个向量的数量积的坐标表示去解决处理有关长度角度垂直等问题.重点:两个向量数量积的坐标表示向量的长度公式两个向量垂直的充要条件.难点:对向量的长度公式两个向量垂直的充要条件的灵活
违法有害信息,请在下方选择原因提交举报