#
第九章 量 M.的曲面积分函数 ? 叫做积分曲面.? 积分的存在性. 二对面积的曲面积分的计算法 的表达式 上的部分 则截出的顶部.机动 目录 上页 下页 返回 结束 它在 xoy 面上的例5. 计算利用重心公式两片机动 目录 上页 下页 返回 结束 解: 由以上结果可知 卫星覆盖了地球 2. 计算: 设的面密度同上
#
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第四节一对面积的曲面积分的概念与性质 二对面积的曲面积分的计算法机动 目录 上页 下页 返回 结束 对面积的曲面积分 第十一章 一对面积的曲面积分的概念与性质引例: 设曲面形构件具有连续面密度类似求平面薄板质量的思想 采用可得
1.实例 曲面型物件的质量 3几点说明(2)关于积分曲面的可加性存在 且有说明a又Σ关于平面x=0对称 被柱面x2y2=2ax(a>0)割下的部分质心利用对称性可知
第四节一、对面积的曲面积分的概念与性质二、对面积的曲面积分的计算法机动 目录 上页 下页 返回 结束 对面积的曲面积分第11章 一、对面积的曲面积分的概念与性质引例: 设曲面形构件具有连续面密度类似求平面薄板质量的思想, 采用可得求质“大化小, 常代变, 近似和, 求极限” 的方法,量 M其中, ? 表示 n 小块曲面的直径的最大值 (曲面的直径为其上任意两点间距离的最大者) 机动 目录 上页 下
第三节一、对面积的曲面积分的概念与性质二、对面积的曲面积分的计算法对面积的曲面积分第十一章 一、对面积的曲面积分的概念与性质引例: 设曲面形构件具有连续面密度类似求平面薄板质量的思想, 采用可得求质“大化小, 常代变, 近似和, 求极限” 的方法,量 M其中, ? 表示 n 小块曲面的直径的最大值 (曲面的直径为其上任意两点间距离的最大者) 1、定义:设 S 为光滑曲面,“乘积和式极限” 都存在,
四两类曲面积分的联系曲面分上侧和下侧> 0 为右侧< 0 为左侧 则规定流速为常向量: 若对? 的任 令三对坐标的曲面积分的计算法? 若体的整个表面的外侧.解: 把? 分为上下两部分例3. 设S 是球面向量形式例5. 设旋转抛物面定义:上述联系公式是否矛盾 代入曲面方程 (方程不同时分片积分)当? 取上侧时转化成第一类曲面积分注意±号
四两类曲面积分的联系曲面分上侧和下侧> 0 为右侧< 0 为左侧 则规定流速为常向量: 若对? 的任 令三对坐标的曲面积分的计算法? 若体的整个表面的外侧.解: 把? 分为上下两部分例3. 设S 是球面向量形式例5. 设旋转抛物面定义:上述联系公式是否矛盾 代入曲面方程 (方程不同时分片积分)当? 取上侧时转化成第一类曲面积分注意±号
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级目录 上页 下页 返回 结束 第四节一对面积的曲面积分的概念与性质 二对面积的曲面积分的计算法 对面积的曲面积分 第十一章 一对面积的曲面积分的概念与性质引例: 设曲面形构件具有连续面密度类似求平面薄板质量的思想 采用可得求质 大化小 常代变 近似和 求极限 的方法量 M.其中 ? 表示 n 小块
违法有害信息,请在下方选择原因提交举报