三两角和两角差倍角半角的正弦余弦正切的公式:1两角和与两角差的正弦余弦正切的公式:(二)三角函数的变换利用两角和与两角差的三角函数公式可以把 的三角函数用角 ɑ 与角 的三角函数来表示但注意切勿把 的三角函数按分配律来计算如 一般不等于
3.1 两角和与差的正弦余弦正切公式一选择题:1.sincos-cossin的值是( )A.-B.C.-sinD.sin2.若sin(αβ)cosβ-cos(αβ)sinβ=0则sin(α2β)sin(α-2β)等于( )A.1B.-1C.0D.±1二解答题3.已知<α<0<β<cos(α)=-sin(β)=求sin(αβ)的值.4.已知非零常数ab满足=tan求.5.已知0<α<si
两角和与差的正弦余弦正切公式一选择题:1.sincos-cossin的值是( )A.-B.C.-sinD.sin2.若sin(αβ)cosβ-cos(αβ)sinβ=0则sin(α2β)sin(α-2β)等于( )A.1B.-1C.0D.±1二解答题3.求值:(1)sin75° (2)sin13°cos17°cos13°sin17°. (3)sincos-sinsin4. 已知<α<0<
#
46 两角和与差的正弦、余弦、正切46 两角和与差的正弦、余弦、正切问题一:46 两角和与差的正弦、余弦、正切46 两角和与差的正弦、余弦、正切46 两角和与差的正弦、余弦、正切46 两角和与差的正弦、余弦、正切46 两角和与差的正弦、余弦、正切例3 不查表,求下列各式的值: 46 两角和与差的正弦、余弦、正切46 两角和与差的正弦、余弦、正切
两角和与差的正弦余弦 正切公式一[复习回顾承上启下]复习:猜想:Cosαcosβsin α sinβCosαcosβ-sin α sinβsin α cosβ-Cosα sinβsin α cosβCosα sinβ二[学生探索揭示规律]sin α cosβ-Cosα sinβ三[运用规律解决问题]五[变式演练深化提高]七[作业
3.1两角和与差的正弦余弦正切公式第二课时一.复习回顾1.两角和与差的正余弦公式cos(?-?)= cos?cos?sin?sin?cos(??)= cos?cos?-sin?sin?sin(??)= sin?cos?cos?sin?sin(?-?)= sin?cos?-cos?sin?公式说明2.两角和与差的正切公式注意: 1?必须在定义域范围内使用上述公式 2?注意公式的结构尤其是符号即:ta
人教A版高中数学必修4两角和与差的正弦、余弦、正切公式复习两角差的余弦公式用- ?代替?看看有什么结果cos[?-(-?)]=cos?cos(-?)+sin?sin(-?)= cos?cos?-sin?sin?cos(?+?)cos(?+?) = cos?cos?-sin?sin?两个和的余弦公式( C(?+?) )思考:两角和与差的正弦公式是怎样的呢 提示:利用诱导公式五(或六)可以实现正弦,
312两角和与差的正弦、余弦、正切公式复习引入1 两角差的余弦公式:复习引入1 两角差的余弦公式:2 讲授新课问题:由两角差的余弦公式,怎样得到两角差的正弦公式呢?两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公
两角和与差的正弦余弦和正切公式一目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件要做到心中有数学习目标:了解两角和与差的正弦余弦正切公式之间的内在联系选用恰当的公式解决问题正确运用两角和与差的三角函数公式进行简单的三角函数式的化简求值.重点难点:重点:两角和与差正弦余弦和正切公式的灵活运用.难点:两角和与差正弦余弦和正切公式的灵活运用.学习策略:学好本节内容要
违法有害信息,请在下方选择原因提交举报