大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 1(1).ppt

    离散周期信号举例1例 判断正弦序列f(k) = sin(βk)是否为周期信号,若是,确定其周期。解 f (k) = sin(βk) = sin(βk + 2mπ) , m = 0,±1,±2,…式中β称为数字角频率,单位:rad。由上式可见: 仅当2π/ β为整数时,正弦序列才具有周期N = 2π/ β。当2π/ β为有理数时,正弦序列仍为具有周期性,但其周期为N= M(2π/ β),M取使N为整数的最小整数。当2π/ β为无理数时,正弦序列为非周期序列。

  • 1.ppt

    离散周期信号举例1例 判断正弦序列f(k) = sin(βk)是否为周期信号,若是,确定其周期。解 f (k) = sin(βk) = sin(βk + 2mπ) , m = 0,±1,±2,…式中β称为数字角频率,单位:rad。由上式可见: 仅当2π/ β为整数时,正弦序列才具有周期N = 2π/ β。当2π/ β为有理数时,正弦序列仍为具有周期性,但其周期为N= M(2π/ β),M取使N为整数的最小整数。当2π/ β为无理数时,正弦序列为非周期序列。

  • 2(1).ppt

    离散周期信号举例2例判断下列序列是否为周期信号,若是,确定其周期。(1)f1(k) = sin(3πk/4) + cos(05πk) (2)f2(k) = sin(2k)解 (1)sin(3πk/4) 和cos(05πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 05π rad由于2π/ β1 = 8/3, 2π/ β2 =4为有理数,故它们的周期分别为N1 = 8 , N2 =

  • 2.ppt

    离散周期信号举例2例判断下列序列是否为周期信号,若是,确定其周期。(1)f1(k) = sin(3πk/4) + cos(05πk) (2)f2(k) = sin(2k)解 (1)sin(3πk/4) 和cos(05πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 05π rad由于2π/ β1 = 8/3, 2π/ β2 =4为有理数,故它们的周期分别为N1 = 8 , N2 =

  • 连续(1).ppt

    连续周期信号举例例 判断下列信号是否为周期信号,若是,确定其周期。(1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt分析两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。解答解答(1)sin2t是周期信号,其角频率和周期分别为ω1= 2 r

  • 频谱.ppt

    #

  • 连续.ppt

    解答

  • 连续.ppt

    连续周期信号举例例 判断下列信号是否为周期信号,若是,确定其周期。(1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt分析两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。解答解答(1)sin2t是周期信号,其角频率和周期分别为ω1= 2 r

  • 1-单符源.ppt

    单符号离散信源的数学模型自信息量:熵函数的公理构成熵函数的公理构成H(Y) =- =1(比特符号)信息熵的代数性质信息熵的解析性质信息熵的最大值(6)可加性信息熵的解析性质凸函数的几何解释: 函数图象上的任意两点确定的弦在其图象的下方.单符号离散信源的数学模型() 自信息和信源熵(—) 熵的基本性质和定理(—) 加权熵及其基本性质() (3)连续性(5)均匀性(9)扩展性

  • 傅氏变换1.ppt

    频域分析例1例:δT(t)←→

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部