#
#
【2-6-3】6反函数连续性定理
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级目录 上页 下页 返回 结束 第十节一最值定理 二介值定理 闭区间上连续函数的性质 第一章 定义:例如一最值定理没有最大最小值注意: 若函数在开区间上连续结论不一定成立 .定理1.在闭区间上连续的函数即: 设则使值和最小值.或在闭区间内有间断 在该区间上一定有最大(证明略)点 例如无最大值和最小值 也无最
第十节一、最值定理 二、介值定理 *三、一致连续性闭区间上连续函数的性质第一章 注意:若函数在开区间上连续,结论不一定成立 一、最值定理定理1在闭区间上连续的函数即:设则使值和最小值或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,例如,无最大值和最小值 也无最大值和最小值 又如, 二、介值定理由定理 1 可知有证:设上有界 定理2 ( 零点定理 )至少有一点且使( 证明略 )推论在闭区间上
第九节连续函数的运算性质 闭区间上连续函数的性质一 连续函数的运算性质二 初等函数的连续性三 闭区间上连续函数的性质一连续函数的运算性质证由连续的定义及极限的四则运算法则,如定理 1(连续函数和差积商的连续性)定理 2 (复合函数的连续性)证:注:证明:定理 3 (反函数的存在与连续性)二 初等函数的连续性“基本初等函数”:幂 指数 对数 三角 反三角函数“初等函数”:由基本初等函数及常数经过有限
#
§110闭区间上连续函数的性质闭区间上的连续函数有着十分优良的性质, 这些性质在函数的理论分析、研究中有着重大的价值, 起着十分重要的作用 下面我们就不加证明地给出这些结论, 好在这些结论在几何意义是比较明显的一、最大值和最小值定理 定义: 对于定义在区间I上的函数f(x), 如果有x0?I, 使得对一切的x?I, 都有f(x) ? f(x0) (或 f(x) ? f(x0) )则称f(x0)为函
第八节一、最值定理 二、介值定理 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质第一章 注意:若函数在开区间上连续,结论不一定成立 一、最值定理定理1在闭区间上连续的函数即:设则使值和最小值或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,机动 目录 上页 下页 返回 结束 例如,无最大值和最小值 也无最大值和最小值 又如, 机动 目录 上页 下页 返回 结束 推论: 由定理 1
第十节一、最值定理 二、介值定理 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质第一章 注意:若函数在开区间上连续,结论不一定成立 一、最值定理定理1在闭区间上连续的函数即:设则使值和最小值或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,机动 目录 上页 下页 返回 结束 例如,无最大值和最小值 也无最大值和最小值 又如, 机动 目录 上页 下页 返回 结束 推论 二、介值定理
违法有害信息,请在下方选择原因提交举报