大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 5-216.ppt

    华东理工大学《复变函数与积分变换》课程教案

  • 5-216.pdf

    52

  • 第四_.ppt

    第四节 留数与留数定理 一孤立奇点及其类型 二留数与留数定理一、孤立奇点及其类型定义1设在不解析,而在的去心邻域内解析,则称为的孤立奇点. 例如, 是 的孤立奇点. 是的奇点,而非孤立奇点,因为都是它的奇点.当n无限增大时,在不论怎样小的去心邻域内总有 的奇点存在.设为 的孤立奇点,那么的某去心邻域内展为洛朗级数          ,其中正幂次项部分 是在以为中心圆域内解析函数(称为解析部分),所

  • 5-2.ppt

    #

  • .ppt

    #

  • 5-2_中心极限.ppt

    习题课教程P114例2第二节 中心极限定理一、依分布收敛二、基本定理三、典型例题四、小结31依分布收敛(教材P131定义31)32 中心极限定理定理31列维-林德伯格定理(独立同分布的中心极限定理)此定理表明:例1 根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布 现随机地取16只,设它们的寿命是相互独立的 求这16只元件的寿命的总和大于1920小时的概率(教材P131第4题)由题给

  • 4.ppt

    第四章留数定理解析函数的积分值与函数奇点的关系。§41 留数定理 由柯西定理,若 f (z)在 l 内解析,若 f (z) 在 l 内有奇点,1、 l 内有一个孤立奇点z = z0???? z0ll0?Laurent 展式中 项的系数a-1,称作f (z) 在孤立奇点 z0的留数(Residue) 。1、 l 内有 n 个孤立奇点n 个孤立奇点,这里画了其中4个留数定理设函数在回路 l 所围区域

  • 复变函--.ppt

    的任一条正向简单闭曲线C.记作则沿如果 为 的一级极点 那么则需将都解析为在解 为了计算方便一般不要将m另解: 在点 的去心邻域 内的Laurent级数为 其中 的项的系数为 从而也有 . 思考:解:被积函数

  • 16章第1隐函存在.ppt

    (0-1)7令1927

  • 复变函课件5-2--.ppt

    五小结与思考.后所得的数称为1.留数定理[证毕](1) 如果为那末9为解析且说明.内部的正向简单闭曲线)13正向圆周 :19可直接展开洛朗级数求21内将的外部 除有四个一级极点C为正向圆周 :1在C的内部

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部