大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • BP.doc

    function main()SamNum=100训练样本数TestSamNum=101测试样本数HiddenUnitNum=10隐节点数InDim=1输入样本维数OutDim=1输出维数下面是一个函数rand(statesum(100clock))NoiseVar=0.1Noise=NoiseVarrandn(1SamNum)SamIn=8rand(1SamNum)-4SamOutNoNo

  • BP算法.doc

    BP神经网络算法程序例1 采用动量梯度下降算法训练 BP 网络训练样本定义如下:输入矢量为 p =[-1 -2 3 1 -1 1 5 -3]目标矢量为 t = [-1 -1 1 1]解:本例的 MATLAB 程序如下: close all clear echo on clc NEWFF——生成一个新的前向神经网络 TRAIN——对 BP 神经网络进行训练 SI

  • BP.doc

    BP神经网络 BP神经网络模型 [14]是一种多层感知器之所以称之为BP神经网络是因为多层感知器具有独特的算法就是著名的BP算法 1 基本BP算法[15](1)网络的构成神经元的网络输入: ()

  • BP.doc

    5.4 BP神经网络的基本原理BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出是一种按误差逆传播算法训练的多层前馈网络是目前应用最广泛的神经网络模型之一BP网络能学习和存贮大量的输入-输出模式映射关系而无需事前揭示描述这种映射关系的数学方程它的学习规则是使用最速下降法通过反向传播来不断调整网络的权值和阈值使网络的误差平方和最

  • BP.docx

    BP网络的算法流程:BP算法的实现步骤 在以上的BP网络学习过程中步骤3和步骤4为输入学习模式的正向传播过程步骤5步骤7为网络误差的反向传播过程步骤8和步骤9则是完成训练和收敛的过程步骤10是对训练好的BP网络的应用由BP神经网络的步骤可以看出BP算法把一组样本的输入输出问题变为一种非线性优化问题BP算法实际上是一种沿负梯度下降的算法运用迭代运算求解神经网络的权重和闭值去对应网络的学习

  • BP.ppt

    单击此处编辑母版文本样式第二级第三级第四级第五pany Logo单击此处编辑母版标题样式BP神经网络 杜娜 计研112 2012年3月10日 Contents BP神经网络的定义概述3 人工神经网络的工作原理2 应用举例5人工神经网络的起源

  • BP.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版

  • BP.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级BP神经网络1一内容回顾二BP网络三网络设计四改进BP网络五内容小结内容安排2一内容回顾 感知机自适应线性元件3一内容回顾 感知机感知机简介神经元模型网络结构功能解释学习和训练局限性自适应线性元件4一内容回顾 感知机自适应线性元件A

  • BP.ppt

    翼长 触角长 类别 Af Af Af Af Af Af Af1引例1引例2BP神经网络原理BP神经网络MATLAB工具箱中提供的函数:(4)利用训练好的BP网络对原始数据进行仿真具体程序为利用原始数据对B

  • bp.ppt

    概述将误差分摊给各层的所有单元---各层单元的误差信号 BP网络的标准学习算法第四步利用网络期望输出和实际输出计算误差函数对输出层的各神经元的偏导数 BP网络的标准学习算法>0此时Δwho<0函 数 名12298销量

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部