第四节 留数与留数定理 一孤立奇点及其类型 二留数与留数定理一、孤立奇点及其类型定义1设在不解析,而在的去心邻域内解析,则称为的孤立奇点. 例如, 是 的孤立奇点. 是的奇点,而非孤立奇点,因为都是它的奇点.当n无限增大时,在不论怎样小的去心邻域内总有 的奇点存在.设为 的孤立奇点,那么的某去心邻域内展为洛朗级数 ,其中正幂次项部分 是在以为中心圆域内解析函数(称为解析部分),所
#
华东理工大学《复变函数与积分变换》课程教案
的任一条正向简单闭曲线C.记作则沿如果 为 的一级极点 那么则需将都解析为在解 为了计算方便一般不要将m另解: 在点 的去心邻域 内的Laurent级数为 其中 的项的系数为 从而也有 . 思考:解:被积函数
第四章留数定理解析函数的积分值与函数奇点的关系。§41 留数定理 由柯西定理,若 f (z)在 l 内解析,若 f (z) 在 l 内有奇点,1、 l 内有一个孤立奇点z = z0???? z0ll0?Laurent 展式中 项的系数a-1,称作f (z) 在孤立奇点 z0的留数(Residue) 。1、 l 内有 n 个孤立奇点n 个孤立奇点,这里画了其中4个留数定理设函数在回路 l 所围区域
52
第四章留数定理及其应用§1 留数定理【刘连寿、王正清编著《数学物理方法》P86-92】当复变函数在区域内解析,则由柯西定理知:,其中是内任一围线。若为的某一个孤立奇点,为包围点的围线,则积分就不一定为,那么。由于为的孤立奇点,在的某个无心邻域内,将作罗朗展开,将沿着完全在内且包围的围线的积分,得,其中利用了,所以在孤立奇点点的罗朗展开式中的系数有特殊的意义。我们称它为在点的留数,记为 (即积分后
第四章留数定理及其应用§1 留数定理【刘连寿、王正清编著《数学物理方法》P86-92】当复变函数在区域内解析,则由柯西定理知:,其中是内任一围线。若为的某一个孤立奇点,为包围点的围线,则积分就不一定为,那么。由于为的孤立奇点,在的某个无心邻域内,将作罗朗展开,将沿着完全在内且包围的围线的积分,得,其中利用了,所以在孤立奇点点的罗朗展开式中的系数有特殊的意义。我们称它为在点的留数,记为 (即积分后
#
第五章 留数理论留数的定义及留数定理利用留数计算实积分Residuetheory 利用留数定理计算围线积分和定积分 掌握留数的计算方法1?(z) 在围线 L 及其内部解析,点 a 在 L 内部 ?回顾:柯西公式在 a 的某去心邻域上被积函数有洛朗展开:柯西公式给出了围线环绕单个极点的积分2 记为(z–b)?1 的系数 c–1 称为 f(z) 在 z=b 处的留数,1 孤立奇点 b≠∞ 处的留数§5
违法有害信息,请在下方选择原因提交举报