大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • .ppt

    差分方程迭代解举例例:若描述某系统的差分方程为 y(k) + 3y(k – 1) + 2y(k – 2) = f(k)已知初始条件y(0)=0,y(1)=2,激励f(k)=2kε(k), 求y(k)。解: y(k) = – 3y(k – 1) – 2y(k – 2) + f(k) k=2 y(2)= – 3y(1) – 2y(0) + f(2) = – 2 k=3 y(3)= – 3y(2) –

  • .ppt

    差分方程迭代解举例例:若描述某系统的差分方程为 y(k) + 3y(k – 1) + 2y(k – 2) = f(k)已知初始条件y(0)=0,y(1)=2,激励f(k)=2kε(k), 求y(k)。解: y(k) = – 3y(k – 1) – 2y(k – 2) + f(k) k=2 y(2)= – 3y(1) – 2y(0) + f(2) = – 2 k=3 y(3)= – 3y(2) –

  • .ppt

    差分方程全解举例例:系统方程 y(k)+ 4y(k – 1) + 4y(k – 2) = f(k)已知初始条件y(0)=0,y(1)= – 1;激励f(k)=2k,k≥0。求方程的全解。 解: 特征方程为λ2 + 4λ+ 4=0可解得特征根λ1=λ2= – 2,其齐次解yh(k)=(C1k +C2) (– 2)k特解为 yp(k)=P (2)k,k≥0代入差分方程得 P(2)k+4P(2)k –1

  • .ppt

    差分方程全解举例例:系统方程 y(k)+ 4y(k – 1) + 4y(k – 2) = f(k)已知初始条件y(0)=0,y(1)= – 1;激励f(k)=2k,k≥0。求方程的全解。 解: 特征方程为λ2 + 4λ+ 4=0可解得特征根λ1=λ2= – 2,其齐次解yh(k)=(C1k +C2) (– 2)k特解为 yp(k)=P (2)k,k≥0代入差分方程得 P(2)k+4P(2)k –1

  • 实验6Logistic与混沌非线性数列的.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级实验6 Logistic方程求解与混沌 —非线性差分方程迭代数列的敛散性分析一差分方程 1概念 2分类二Logistic方程 1 建立 2敛散性分析主要内容:Logistic方程所产生的数列敛散性分析一差分方程1差分方程的定义 数列{xn

  • 线性法.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第三章 线性方程组迭代解法Numerical Value Analysis内容提要 引言 3.1(I) Jacobi 迭代法 3.1(II) Gauss-Seidel 迭代法 3.1(III) SOR法 3.2 迭代公式的矩阵表示学习要点引言引子迭代法的基本思想迭代法的主要步骤实际问题中的线性方程组Ax=b对其以不同的角度

  • 线性组求--法.ppt

    例:求解方程组ε(10) ∞=x(10)–x=则BJ=I- D-1 A= D-1(LU) fJ=D-1b称BJ为Jacobi迭代矩阵9 x1 – x2 – x3 = 7x1 10x2 – x3= 8x1 – x2 15x3= 13对k=012按格式: x(k1)=Bx(k)f 计算称Gauss-Seidel迭代法(D – L)x(k1) = b Ux (k)x1 =

  • .ppt

    #

  • 法求线性组.ppt

    x(k1)=f(x( k )) 迭代矩阵基本迭代法Gauss-Seidel iterationHow to check if a certain iteration system converges or notG-S iteration divergesorder rStrictly diagonally dominant?JG-S iteration convergeSuppo

  • 线性组的法.ppt

    #

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部