两角和与差的正弦余弦正切公式(二)课时目标 1.能利用两角和与差的正余弦公式导出两角和与差的正切公式.2.掌握两角和与差的正切公式及变形运用.1.两角和与差的正切公式(1)T(αβ):tan(αβ)_____________________________________________________.(2)T(α-β):tan(α-β)_____________________________
PAGE PAGE 43. 1.2 两角和与差的正弦余弦正切公式三维目标1.在学习两角差的余弦公式的基础上通过让学生探索发现并推导两角和与差的正弦余弦正切公式了解它们之间的内在联系并通过强化题目的训练加深对公式的理解培养学生的运算能力及逻辑推理能力从而提高解决问题的能力.2.通过两角和与差的正弦余弦正切公式的运用会进行简单的求值化简恒等证明使学生深刻体会联系变化的观点自觉地利用联
两角和与差的正弦余弦正切公式班级 日期 温馨提示:用心去倾注.用脑去思考.用行动去演绎你的数学人生 重点难点重点:两角和与差公式的应用和旋转变换公式难点:两角和与差公式变aSinabCosa为一个角的三角函数的形式二教学大家首先回顾一下两角和与差的余弦公式:.则: =
两角和与差的正弦余弦 正切公式一[复习回顾承上启下]复习:猜想:Cosαcosβsin α sinβCosαcosβ-sin α sinβsin α cosβ-Cosα sinβsin α cosβCosα sinβ二[学生探索揭示规律]sin α cosβ-Cosα sinβ三[运用规律解决问题]五[变式演练深化提高]七[作业
3.1两角和与差的正弦余弦正切公式第二课时一.复习回顾1.两角和与差的正余弦公式cos(?-?)= cos?cos?sin?sin?cos(??)= cos?cos?-sin?sin?sin(??)= sin?cos?cos?sin?sin(?-?)= sin?cos?-cos?sin?公式说明2.两角和与差的正切公式注意: 1?必须在定义域范围内使用上述公式 2?注意公式的结构尤其是符号即:ta
(C(α-β))sinαcosβ-cosαsinβ答案: ∴tan17?tan28?=tan(17?28?)(1?tan17? tan28?)把下列各式化为一个角的三角函数形式
人教A版高中数学必修4两角和与差的正弦、余弦、正切公式复习两角差的余弦公式用- ?代替?看看有什么结果cos[?-(-?)]=cos?cos(-?)+sin?sin(-?)= cos?cos?-sin?sin?cos(?+?)cos(?+?) = cos?cos?-sin?sin?两个和的余弦公式( C(?+?) )思考:两角和与差的正弦公式是怎样的呢 提示:利用诱导公式五(或六)可以实现正弦,
312两角和与差的正弦、余弦、正切公式复习引入1 两角差的余弦公式:复习引入1 两角差的余弦公式:2 讲授新课问题:由两角差的余弦公式,怎样得到两角差的正弦公式呢?两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公
两角和的正弦余弦正切一课题:两角和的正弦余弦正切二教学目标:1.了解两角和与差的正弦余弦正切公式之间的内在联系选用恰当的公式解决问题2.正确运用两角和与差的三角函数公式进行简单的三角函数式的化简求值和恒等式证明三教学重难点:根据具体问题选择恰当的三角公式并进行有益的变形四教学过程:(一)复习:公式. (二)新课讲解:例1:已知求的值方法:切化弦解:.【变题一】证明:【变题二】求的值例2:求
第三章 三角恒等变换 两角和与差的正弦余弦正切公式(一)(两个课时) 主备教师:穆云映一内容及其解析: 本节课要学的内容两角和与差的正弦余弦正切公式指的是两角和与差的正弦余弦正切公式的推导其关键是两角和与差的正弦余弦公式推导 理解它关键就是要理解两角差的余弦公式以及在第一章学过的几组诱导公式学生已经学过三角函数以及两角差的余弦公式本节课的内容两
违法有害信息,请在下方选择原因提交举报