第五章 细胞膜及其表面( CELL MEMBRANE AND ITS SURFACE )细胞膜(cell membrane):又称质膜(plasma membrane) 。内膜:形成各种细胞器的膜。生物膜(biomembrane):质膜和内膜的总称。第一节 细胞膜的分子结构和特性主要由膜脂和膜蛋白组成,还有少量糖、水、无机盐及金属离子。糖以糖脂和糖蛋白形式存在。不同生物膜上脂质和蛋白质的比例有
作业:5-5, 5-6(b, d, h), 5-7一、现象对于非圆截面杆,横截面不再保持平面。§4-7非圆截面轴扭转对非圆截面杆是否正确?限制扭转 :横截面的翘曲受到限制的扭转。自由扭转 :横截面的翘曲没有限制的扭转。杆件各横截面的翘曲程度都相同,杆件各横截面的翘曲程度都不同,相邻两截面间纵向纤维的长度无变化,横截面上只有切应力而没有正应力。相邻两截面间纵向纤维的长度发生改变,横截面上既有切应力也
作 业: 5-7,5-9,5-13,5-16, 5-19 中性轴与中性层中性轴过截面形心 中性轴位置: 正应力公式:中性层曲率:分布规律:上一讲回顾沿截面高度线性,中性轴处为零,一侧拉,一侧压 公式的推广纯弯梁精确解 公式由纯弯梁推出, 当:公式推广:,对称弯曲 , 纯弯与非纯弯 应用条件:典型截面的惯性矩与抗弯截面系数例:简支梁受均布载荷作用,若分别采用截面面积相等 的实心圆截面和空心圆截面求
作业: 5-7(b,d,h), 5-8?假想地将梁切开,并任选一段为研究对象?画所选梁段的受力图,FS 与 M 宜均设为正?由 S Fy = 0 计算 FS ?由 S MC = 0 计算 M,C 为截面形心指定截面剪力与弯矩的计算剪力、弯矩方程: 剪力、弯矩沿梁轴(x轴)变化的表达式。剪力、弯矩图:剪力与弯矩沿梁轴变化的图线上一讲回顾剪力:使微段有沿顺时针方向转动趋势为正弯矩:使微段弯曲呈下凹形为
第五章 细胞膜及其表面( CELL MEMBRANE AND ITS SURFACE )细胞膜(cell membrane):又称质膜(plasma membrane) 。内膜:形成各种细胞器的膜。生物膜(biomembrane):质膜和内膜的总称。第一节 细胞膜的分子结构和特性主要由膜脂和膜蛋白组成,还有少量糖、水、无机盐及金属离子。糖以糖脂和糖蛋白形式存在。不同生物膜上脂质和蛋白质的比例有
作 业:6-14(a),6-16,6-17,6-19中性轴过截面形心 中性轴位置: 正应力公式:中性层曲率:,对称弯曲 , 纯弯与非纯弯 应用条件:上一讲回顾一、定义微面积dA对z轴的静矩微面积dA对y轴的静矩静矩微面积dA对z轴和y轴的惯性矩惯性矩极惯性矩 截面几何性质二、形心坐标三、惯性矩平行移轴公式解:例1: 简支梁受均布载荷作用,若分别采用截面面积相等的实心圆截面和空心圆截面求梁的最大
作业:6-14 (a), 6-17, 6-19, 6-29中性轴过截面形心 中性轴位置: 正应力公式:中性层曲率:,对称弯曲 , 纯弯与非纯弯 应用条件:上一讲回顾一、定义微面积dA对z轴的静矩微面积dA对y轴的静矩静矩微面积dA对z轴和y轴的惯性矩惯性矩极惯性矩 截面几何性质二、形心坐标三、惯性矩平行移轴公式解:例1: 简支梁受均布载荷作用,若分别采用截面面积相等的实心圆截面和空心圆截面求梁
作 业: 10-2,10-4,10-5,10-8Page1上一讲回顾1.弹性平衡稳定性的概念 受压杆件保持初始直线平衡状态的能力称为压杆的稳定性;弹性体保持初始平衡状态的能力称为弹性平衡的稳定性。 2.压杆的临界载荷 使压杆直线形式的平衡由稳定转为不稳定的轴向压力值。 3、 两端铰支细长压杆稳定微分方程 4、 两端铰支细长压杆的临界载荷5、 两端非铰支细长压杆的临界载荷解析法类比法Page21)、
作 业: 8-7,8-8,8-10,8-11 请用坐标纸作图Page1上一讲回顾(1)一点处的应力状态平面应力状态已知x,y面的应力,求任意斜截面应力解析法Page2应力圆的画法:确定x面和y面的应力坐标点D、E 以DE为直径作应力圆。应力圆点与微体面对应关系对应关系:转向相同;转角加倍。图解法Page3?几种简单受力状态的应力圆Page4? 一般受力状态的应力圆Page5§8-4 平面应力状态的
#
违法有害信息,请在下方选择原因提交举报