大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • D1-9.ppt

    YANGZHOU UNIVERSITY上有界. (最值性定理)  a又内必有方程的根 至少有一个不超过4 的正根 .

  • D1-10.ppt

    结论不一定成立 .点 至少有一点证: 作辅助函数最大值之间的任何值 .取三. 一致连续性在 I 上一致连续 .这说明显然在故由介值定理可知:至少有一个不超过 4 的 正根 .

  • D1-10.ppt

    #

  • D1-10.ppt

    结论不一定成立 .点 至少有一点证: 作辅助函数最大值之间的任何值 .取三. 一致连续性在 I 上一致连续 .这说明显然在故由介值定理可知:习题课 在开区间

  • D1.10---.ppt

    #

  • §1.9.ppt

    §110闭区间上连续函数的性质闭区间上的连续函数有着十分优良的性质, 这些性质在函数的理论分析、研究中有着重大的价值, 起着十分重要的作用 下面我们就不加证明地给出这些结论, 好在这些结论在几何意义是比较明显的一、最大值和最小值定理 定义: 对于定义在区间I上的函数f(x), 如果有x0?I, 使得对一切的x?I, 都有f(x) ? f(x0) (或 f(x) ? f(x0) )则称f(x0)为函

  • 1.8.ppt

    第八节一、最值定理 二、介值定理 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质第一章 注意:若函数在开区间上连续,结论不一定成立 一、最值定理定理1在闭区间上连续的函数即:设则使值和最小值或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,机动 目录 上页 下页 返回 结束 例如,无最大值和最小值 也无最大值和最小值 又如, 机动 目录 上页 下页 返回 结束 推论: 由定理 1

  • D1-10第一章小结.ppt

    #

  • 1.10.ppt

    第十节一、最值定理 二、介值定理 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质第一章 注意:若函数在开区间上连续,结论不一定成立 一、最值定理定理1在闭区间上连续的函数即:设则使值和最小值或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,机动 目录 上页 下页 返回 结束 例如,无最大值和最小值 也无最大值和最小值 又如, 机动 目录 上页 下页 返回 结束 推论 二、介值定理

  • .doc

    § 闭区间上连续函数的性质性质的证明定理1.(有界性)若函数在闭区间[ab]连续则函数在闭区间[ab]有界即>0[ab]有≤.证法:由已知条件得到函数在[ab]的每一点的某个邻域有界.要将函数在每一点的邻域有界扩充到在闭区间[ab]有界可应用有限覆盖定理从而得到>0.证明:已知函数在[ab]连续根据连续定义[ab]取=1>0()[ab]有<1.从而()[ab]有≤<1即[ab]函数在开区间(

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部