#
函数的奇偶性函函数的奇偶性数的奇偶性一、概念:对于函数f(x)的定义域内任意一个x如果都有f(-x)=f(x),则函数f(x)叫做偶函数。任意任意任意都有都有都有都有都有∵当x=3时,f(3)=9,但f(-3)不存在, 不符合偶函数的定义∴f(x)不是偶函数函数f(x)=x2, x∈(-3,3]是不是偶函数?任意任意(2) f(-x)=f(x)思考:(必要) 练习: 已知:函数f(x)=x 3 ,
函 数 的 奇 偶 性练习:已知: 1.f(x)= x3+3x 求f(-x) 2.g(x)=x4+x2+3求g(-x)3 h(x)= x2+2x求h(-x)2g(-x)=x4+x2+3解 : 1f(-x)= -x3-3x3h(-x)= x2-2x≠-h(x) ≠h(x)思考:从(1)、(2)两题中你得出什么结论 f(-x)=-f(x)g(-x)=g(x)函数奇偶性的定义:如果对于函数y=f(x)的
例: 已知函数f(x)在R上是增函数,g(x)在[a,b]上是减函数,求证:f[g(x)]在[a,b]上是减函数证明:设x1,x2∈[a,b],且x1x2,∵g(x)在[a,b]上单调递减,∴g(x1) g(x2),又f(x)在R上递增,而g(x1)∈R,g(x2)∈R,∴f[g(x1)]f[g(x2)], ∴f[g(x)]在[a,b]上是减函数复合函数单调性的规律见下表:说明:⑴定义中的等式f(
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级XYoOXY2.1.4 函数的奇偶性 1.已知函数f(x)=x2ax1在区间[2∞)上是增函数求a的取值范围2.若函数f(x)是定义在区间(-33)上的增函数且f(a)<f(2a-1).求a的取值范围-3<a<2a-1<3 ∴1<a<2想一想做一做3.若函数f(x)=x21则f(x-1)= f(-x)=
函数的奇偶性一知识回顾:1函数的奇偶性: (1)对于函数其定义域关于原点对称: 如果______________________________________那么函数为奇函数 如果______________________________________那么函数为偶函数. (2)奇函数的图象关于__________对称偶函数的图象关于________
o……x注意:(1)当 X∈A时-X ∈A (定义域关于原点对称)y例 判断下列函数的奇偶性:(1) f(x)=xx3x5 (2) f(x)=x21(3) f(x)=x1 (4) f(x)=x2 x∈[-12](5) f(x)=0所以函数f(x)= x21是偶函数解:(3)函数f(x)=x1的定义域为R所以函数f(x)= x2 x∈[-12]既不是奇函数也不是偶函数-2f(x)-3f(-2
函数的奇偶性 学习目标 理解函数奇偶性的概念并掌握用定义判断一些函数奇偶性的方法理解奇函数偶函数的图像的对称性 学习过程 一新课导学※ 探索新知1试在下面作出以下函数的图像:xyOxyOxyOxyO(1) (2) (3) (4)问题: (1)对于互为相反数的两个自变量的值对应的函数值有何特点(2)这些函数图象(1与23与4)有什么共同的特征新知1:奇偶性的定义1.奇函数的定义
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级函数的奇偶性(一)问题情境 1请观察以下两组函数的图象从对称的角度你发现了什么(1)(2) 再观察表你看出了什么…-3-2-10123……9410149……-3-2-10123……6420246…——当自变量x取一对相反数时相应的两个函数值相等(二)学生活动【探究】图象关于 轴对称的函数满足:对定义域内的任意一个
函数的奇偶性一单选题(共10道每道10分)1.设函数的定义域为且是奇函数则实数a的值是( ) 答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质 2.已知函数是偶函数那么是( )A.奇函数 B.偶函数 C.既奇且偶函数 D.非奇非偶函数 答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的判断 3.已知是定义在上的奇函数则下列函数:①②③④.其
违法有害信息,请在下方选择原因提交举报