133 洛朗级数1331、洛朗级数的定义1、问题的引入由上一节知f (z) 在 ?z - z0?R 内解析,则在该圆域内, f (z)可展开成 z - z0的幂级数。若 f (z) 在z0点不解析,但在圆环域 R1?z - z0?R2 内解析,那么,f (z)能否用级数表示呢?例如,1本节将讨论在以z 0为中心的圆环域内解析的函数的级数表示法。22、洛朗级数的定义---含有正负幂项的级数定义形如-
131复级数132泰勒级数133洛朗级数第13章 复级数与留数定理134留数与留数定理1第13章复级数与留数定理1、复数列极限的定义定义1131、复级数1311、复数项级数2342、复数项级数的定义级数的前面n项的和不收敛定义2设复数列:56几个结论定义33、复数项级数的绝对收敛与条件收敛781312、复变函数项级数 1、复变函数项级数的定义定义4设复变函数列:级数的最前面n项的和9若级数(1)在
rzz 注: 如果 f (z)在z0解析 则使 f (z)在z0的泰勒展开式成立的圆域的半径 R等于从z0到 f (z)的距z0最近一个奇点a 的距离 即R=a-z0. 例1 把函数 展开成z的幂级数. y的成立必须受x<1的限制 这一点往往使人难以理解 因为上式左端的函数对任何实数都是确定的而且是可导的.这是z 的幂级数 设收敛半径为R: 例如级数OR2K2z0解: 函数
§23初等函数本节将微积分的初等函数推广到复变函数情形,给出基本初等函数的定义,研究这些基本初等函数的性质,并说明它的解析性。由此可以得到初等函数的相关性质。231 指数函数232 对数函数233 乘幂与幂函数234 三角函数和双曲函数235 反三角函数与反双曲函数本节内容指数函数的性质定义 231指数函数的概念231 指数函数(3)当I m (z) = 0,即z = x ∈ R时, 周期性质是实
rzz 注: 如果 f (z)在z0解析 则使 f (z)在z0的泰勒展开式成立的圆域的半径 R等于从z0到 f (z)的距z0最近一个奇点a 的距离 即R=a-z0. 例1 把函数 展开成z的幂级数. y的成立必须受x<1的限制 这一点往往使人难以理解 因为上式左端的函数对任何实数都是确定的而且是可导的.这是z 的幂级数 设收敛半径为R: 例如级数OR2K2z0解: 函数
#
?复变函数与解析函数?复变函数的积分?复变函数的级数与留数定理复变函数1111复数及其运算112复变函数113解析函数第11章 复变函数与解析函数114初等函数2111、复数及其运算1、复数的定义(2)复数的定义对任何实数x,y,称z=x +yi复数,x 和y 分别称为z 的实部和虚部记作x=Re(z),y =Im(z)2、两个复数相等,当且仅当其实部和虚部分别相等;4、两个复数不能比较大小。3、
112复变函数(续)113解析函数114初等函数1122、复变函数的极限与连续性1121、复变函数的概念11122、复变函数的极限与连续性1、复变函数的极限1)、复变函数的极限的定义2)、复变函数极限存在的充要条件3)、复变函数极限的运算法则22、复变函数的连续性1)、连续性的定义定义11232)、连续的充分必要条件定理112333)、连续函数的运算定理1124(1)连续函数的和、差、积、商(分母
121复变函数积分的概念122积分基本定理123积分基本公式第12章 复变函数的积分11211、复函数积分的概念及其简单性质1 有向曲线121、复变函数积分的概念2 2 积分的定义定义3 3 积分性质由积分定义得:41212 积分存在的条件及其计算法注:5由曲线积分的计算法得67891011121314122、积分基本定理问题:复积分的积分值与路径无关,或沿封闭曲线的积分值为零的条件是什么?151
第二节 留数定义:1)可去奇点:第一节孤立奇点例2 求下列各函数的奇点并判别类型.解:定义:定理1.注:第一节孤立奇点第一节孤立奇点第一节孤立奇点第二节留数2. 留数的计算方法证明:第二节留数证明:第二节留数R第二节留数本节介绍利用留数计算几种特殊类型的定积分.若用万能代换计算较繁.第三节留数在定积分计算中的应用
违法有害信息,请在下方选择原因提交举报