单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级首页§ 3.1.1 两角和与差的正弦余弦公式4192022引入4192022引入4192022新课4192022新课4192022新课4192022结束谢谢再见4192022
探究:如何由余弦公式推出正弦公式探究:正切和差公式
两角和与差的正弦余弦 正切公式一[复习回顾承上启下]复习:猜想:Cosαcosβsin α sinβCosαcosβ-sin α sinβsin α cosβ-Cosα sinβsin α cosβCosα sinβ二[学生探索揭示规律]sin α cosβ-Cosα sinβ三[运用规律解决问题]五[变式演练深化提高]七[作业
3.1两角和与差的正弦余弦正切公式第二课时一.复习回顾1.两角和与差的正余弦公式cos(?-?)= cos?cos?sin?sin?cos(??)= cos?cos?-sin?sin?sin(??)= sin?cos?cos?sin?sin(?-?)= sin?cos?-cos?sin?公式说明2.两角和与差的正切公式注意: 1?必须在定义域范围内使用上述公式 2?注意公式的结构尤其是符号即:ta
人教A版高中数学必修4两角和与差的正弦、余弦、正切公式复习两角差的余弦公式用- ?代替?看看有什么结果cos[?-(-?)]=cos?cos(-?)+sin?sin(-?)= cos?cos?-sin?sin?cos(?+?)cos(?+?) = cos?cos?-sin?sin?两个和的余弦公式( C(?+?) )思考:两角和与差的正弦公式是怎样的呢 提示:利用诱导公式五(或六)可以实现正弦,
312两角和与差的正弦、余弦、正切公式复习引入1 两角差的余弦公式:复习引入1 两角差的余弦公式:2 讲授新课问题:由两角差的余弦公式,怎样得到两角差的正弦公式呢?两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公式:探究1:两角和与差的正弦公
3.1 两角和与差的正弦余弦正切公式一选择题:1.sincos-cossin的值是( )A.-B.C.-sinD.sin2.若sin(αβ)cosβ-cos(αβ)sinβ=0则sin(α2β)sin(α-2β)等于( )A.1B.-1C.0D.±1二解答题3.已知<α<0<β<cos(α)=-sin(β)=求sin(αβ)的值.4.已知非零常数ab满足=tan求.5.已知0<α<si
两角和与差的正弦余弦正切公式一选择题:1.sincos-cossin的值是( )A.-B.C.-sinD.sin2.若sin(αβ)cosβ-cos(αβ)sinβ=0则sin(α2β)sin(α-2β)等于( )A.1B.-1C.0D.±1二解答题3.求值:(1)sin75° (2)sin13°cos17°cos13°sin17°. (3)sincos-sinsin4. 已知<α<0<
#
两角和与差的正弦余弦 和正切公式.1 两角差的余弦公式问题提出 1.在三角函数中我们学习了哪些基本的三角函数公式 2.对于30°45°60°等特殊角的三角函数值可以直接写出利用诱导公式还可进一步求出150°210°315°等角的三角函数值.我们希望再引进一些公式能够求更多的非特殊角的三角函数值同时也为三角恒等变换提供理论依据. 3
违法有害信息,请在下方选择原因提交举报