大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • _.ppt

    #

  • 、余 .ppt

    正弦函数的图象三角函数线正弦线余弦线正切线xyoMA(1,0)Pα的终边MP 作出下列各角 的正弦线?学生练习:xyPOA(1,0) 正弦线: MP MxyoPMA(1,0)正弦线:MP?xyoPMA(1,0)正弦线变为一个点作正弦函数的图象xyo1-1?2?AB(B)(A)O1五个关键点:正弦曲线xyo1-1-2?-??2?3?4?例:作出函数的简图。按五个关键点列表:解:y=1+sinx, x

  • __(教案).doc

    (组 别:高中) 正弦函数的图象学校:宁南县高级中学 年级:2008级 科目:数学 :刘福鑫一、教学目标1、知识目标:正弦函数的图象2、能力目标:(1)会用单位圆中的正弦线画出正弦函数图象;(2)掌握正弦函数图象的“五点作图法”; (3)培养观察能力、分析能力、归纳能力和表达能力等;(4)培养数形结合和化归转化的数学思想方法。3、德育目标:(1)渗透由抽象到具体的思想,使学生理解动与静的辩证

  • __(说稿).doc

    正弦函数的图象(说课稿)宁南县高级中学刘福鑫一、教材分析1、教材的地位与作用《正弦函数的图象与性质》是高中《数学》第一册(下)第四章第八节的内容,其主要内容是正弦函数的图象与性质。过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数的图象与性质,为今后余弦函数、正切函数的图象与性质、函数图象的研究打好基础。因此,本节的学习有着极其重要的地位。

  • .ppt

    (1) 列表x01y=sinx x?R-1正弦曲线-1 正弦余弦函数的图象 3?正弦曲线图象的最低点-(2) 描点(定出五个关键点)(1)y=2sinx2五点作图法xRymax=14?o奇偶性2?-1解:(1)当cos =1即x=6k? (k?Z)时ymzx=1 ∴函数的最大值为1 取最大值时x的集合为{xx=6k?k?Z}.小结2.三角函数的基本性质

  • 、余.ppt

    #

  • 、余.ppt

    #

  • .ppt

    正弦、余弦函数的图象和性质正弦函数的图象 (1)当且仅当时,取得最大值1。定义域:正弦曲线R值 域:[-1,1]正弦函数(2)当且仅当 时,取得最小值-1。余弦函数图象余弦曲线定义域:R值 域:[-1,1]余弦函数(1)当且仅当时,取得最大值1。 (2)当且仅当 时,取得最小值-1。周期函数:一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(

  • -余).doc

    正弦函数余弦函数的图象和性质(一)学习目标 正余弦函数图象的作法通常采用五点法函数y=sinxy=cosx的定义域都是R值域都是[-11]周期函数的定义可理解为:当函数的自边量的一切值每增加或减少一个非零定值T时函数值重复出现周期函数的周期不止一个若T是某函数的一个周期则kT(k∈Z且k≠0)也一定是这个函数的周期 正弦函数余弦函数的周期是2kπ(k∈Z且k≠0)它们的最小正周期都是2π5 正弦函

  • 4.8.2.ppt

    (2)描点查三角函数表得三角函数值描点的正弦线1(3) 平移----因为终边相同的角的三角函数值相同所以y=cosx的图象在……        ……与y=cosxx∈[02π]的图象相同--(1) 列表(列出对图象形状起关键作用的五点坐标)---11四练习:P63

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部