版权所有:中华资源库 专题45 分式方程聚焦考点☆温习理解1、分式方程分母里含有未知数的方程叫做分式方程。2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。3、分式方程的特殊解法换元法:换元法是
版权所有:中华资源库 专题06 分式及分式方程聚焦考点☆温习理解一、分式 1、分式的概念一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。(2)分式的变号法则:分式的分子、分母与分
版权所有:中华资源库 专题05 整式方程(组)聚焦考点☆温习理解一、一元一次方程的概念 1、方程含有未知数的等式叫做方程。2、方程的解能使方程两边相等的未知数的值叫做方程的解。3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。4、一元一次方程只含有一个未知数,并且未知数的最高次
版权所有:中华资源库 专题04 因式分解聚焦考点☆温习理解1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。2、因式分解的常用方法(1)提公因式法:(2)运用公式法:(3)分组分解法:(4)十字相乘法:3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式
版权所有:中华资源库 考点二十三:因式分解 聚焦考点☆温习理解1.因式分解把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算.2.基本方法(1)提取公因式法:ma+mb-mc=m(a+b-c) (2)公式法:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)23因式分解的一般步骤(1)如果多项式的各项有公因式,那
版权所有:中华资源库 专题03 整式聚焦考点☆温习理解一.单项式 1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。2、单项式只含有数字与字母的积的代数式叫做单项式。注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如是6次单项式。二
版权所有:中华资源库 考点二十二:分式及其计算 聚焦考点☆温习理解1、分式的概念一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。当B≠0时,分式有意义,当B=0时,分式无意义;当A=0且B≠0,分式的值等于02、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个
版权所有:中华资源库 考点三十七:一次方程(组) 聚焦考点☆温习理解1.定义(1)含有未知数的等式叫做方程;(2)只含有一个未知数,且含未知数的项的次数是一次,这样的整式方程叫做一元一次方程;(3)含有两个未知数,且含未知数的项的次数为一次,这样的整式方程叫做二元一次方程.(4)将两个或两个以上的方程联立在一起,就构成了一个方程组.如果方程组中含有两个未知数,且含未知数的项的次数都是一次
版权所有:中华资源库 考点二十五:一元二次方程 聚焦考点☆温习理解一、一元二次方程及有关概念1 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程2 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数3 一元二次方程必须具备三个条件:(1
版权所有:中华资源库 考点三十六:方程(组)的应用 聚焦考点☆温习理解1.列方程(组)解应用题的一般步骤(1)审题;(2)设未知数;(3)找出包含未知数的等量关系式;(4)列出方程(组;(5)求出方程(组)的解;(6)检验并作答.2.各类应用题的等量关系(1)行程问题:路程=速度×时间;相遇问题:两者路程之和=全程;追及问题:快者路程=慢者先走路程(或相距路程)+慢者后走路程.(2)工程
违法有害信息,请在下方选择原因提交举报