课 题:7.5曲线和方程(二)教学目的:1.了解什么叫轨迹并能根据所给的条件选择恰当的直角坐标系求曲线的轨迹方程画出方程所表示的曲线 2.在形成概念的过程中培养分析抽象和概括等思维能力掌握形数结合函数与方程化归与转化等数学思想以及坐标法待定系数法等常用的数学方法3.培养学生实事求是合情推理合作交流及独立思考等良好的个性品质以及主动参与勇于探索敢于创新的精神教学重点:求曲线方程的方法步骤.教学
课 题:7.5曲线和方程(一)曲线和方程教学目标:1.了解曲线上的点与方程的解之间的一一对应关系领会曲线的方程与方程的曲线的概念及其关系并能作简单的判断与推理 2.在形成概念的过程中培养分析抽象和概括等思维能力掌握形数结合函数与方程化归与转化等数学思想以及坐标法待定系数法等常用的数学方法3.培养学生实事求是合情推理合作交流及独立思考等良好的个性品质以及主动参与勇于探索敢于创新的精神教学重点:
课 题:7.5曲线和方程(三)教学目的:1.会根据已知条件求一些较复杂的曲线方程2.提高学生分析问题解决问题的能力.3.渗透数形结合思想.教学重点:找出所求曲线上任意一点的横坐标与纵坐标之间的关系式 教学难点:点随点动型的轨迹方程的求法(相关点法)授课类型:新授课课时安排:1课时教 具:多媒体实物投影仪教学过程:一复习引入: 求简单的曲线方程的一般步骤:(1)建立适当的坐标系用有序实数
单击此处编辑母版标题样式单击此处编辑母版标题样式§7.5 曲面及其方程§7.6 空间曲线及其方程 主要内容34空间曲线及其方程2旋转曲面1 空间曲面及其方程 柱 面5空间曲线在坐标面上的投影§7.5 曲面及其方程 一空间曲面及其方程求到两定点A(123) 和B(2-14)等距离的点的化简得即说明: 动点轨迹为线段 AB 的垂直平分面.引例 注:在此平面上的点的坐标都满足此方程 不在此平
曲线和方程(二)备课人:寸待忠 一内容及解析求曲线的方程是人教版高中《数学》第二册(必修本)的第七章直线和圆的方程的重点内容之一也是难点之一它把高中数学中的解析几何和代数紧紧连在一起容纳了高中数学教学中很多的数学思想如函数与方程思想数形结合思想等价转换思想及运动变换思想这正是高考中重点所要考察的数学思想另外本节内容为以后的圆锥曲线内容作了理论和方法上的准备是解析几何中承上启下的关键章节《解析
#
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级§7.1 求曲线的方程高2005级高考数学专题复习课件 §7.1 求曲线的方程一考试内容1.直线的倾斜角和斜率直线方程的点斜式和两点式.直线方程的一般式.2.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.3.用二元一次不等式表示平面区域.简单的线性规划问题.4.曲线与方程的概念.由已知条件列出曲线方程.5.圆
曲线和方程例1.下列方程是否为曲线的方程曲线是否为方程的曲线(1)方程:曲线:过点斜率为的直线(2)方程:曲线:过点的抛物线(3)设在中点对应的曲线方程:(4)设线段方程:(5)到两坐标轴距离相等的点的轨迹例2.设AB两点的坐标是求线段AB的垂直平分线的方程例3.点与两条互相垂直的直线的距离的积是常数求点的轨迹方程例4.已知一条曲线在x轴的上方它上面的每一点到点的距离减去它到x轴的距离的差都是2求
#
75 曲线和方程(1) -----曲线的方程11/21/2023一、曲线与方程关系举例: 位于第一、三象限的角平分线的方程是x-y=0即:如果点M(x0,y0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,从而x0=y0,那么它的坐标(x0,y0)是方程x-y=0的解;反之,如果(x0,y0)是方程x-y=0的解,即x0=y0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上(
违法有害信息,请在下方选择原因提交举报