北京大学2005 数学专业研究生 数学分析设试求和.解: 当然此上极限可以令.此下极限当然可以令(1)设在开区间可微且在有界证明在一致连续.证明:由存在.这显然就是(2) 设在开区间可微且一致连续试问在是否一定有界(若肯定回答请证明若否定回答举例说明)证明:否定回答.闭区间上连续函数一致连续.所以显然此而3.设. (1)求的麦克劳
#
北京大学2005 数学专业研究生数学分析设,试求和解: 当然此上极限可以令此下极限当然可以令(1)设在开区间可微,且在有界。证明在一致连续证明:由存在这显然就是(2) 设在开区间可微且一致连续,试问在是否一定有界。(若肯定回答,请证明;若否定回答,举例说明)证明:否定回答闭区间上连续函数一致连续所以显然此而3.设(1)求的麦克劳林展开式。(2)求。解: 这道题目要是直接展开是很麻烦的先对原式做
中国在职教育网在职研究生招生门户网,提供大量的在职研究生简章及下载 5中国在职教育网论坛 全面的在职研究生相关资讯,以及广泛的学员交流 北京大学2005 数学专业研究生数学分析设,试求和解: 当然此上极限可以令此下极限当然可以令(1)设在开区间可微,且在有界。证明在一致连续证明:由存在这显然就是(2) 设在开区间可微且一致连续,试问在是否一定有界。(若肯定回答,请证明;若否定回答,举例说明)证
设函数在上有定义对所有有且收敛求证:证明 使得由对上述固定的因而存在当时有 于是 即 设在上有定义对任意在上可积且收敛试证:证明 由推广的黎曼引理对任意有 对任意存在有 对上述及固定的当时有 于是故结论得证北京大学2005年数学分析考研试题及解答1 设试求和解 首先我们注意到在的时候是单调
#
#
课程编号:12000044 北京理工大学2010-2011学年第一学期2009级计算机学院《数值分析》期末试卷A卷 班级 成绩 注意:① 答题方式为闭卷 ② 可以使用计算器? 请将填空题和选择题的答案直接填在试卷上计算题答在答题纸上填空题
1.解:在处处存在,即在上连续可导,从而有2.3在s上加一个平面L:就可以把s围成闭合的曲面,应用高斯公式4.应用不等式显然对由M判别法有,级数在R上一致收敛5证明:(必要性)若f(x)在(a,b)一致连续,即有因为{}在(a,b)中的收敛列,不妨设{}收敛于x,则对上述的从而有充分性:还没能解决!请见谅
#
违法有害信息,请在下方选择原因提交举报