1定义的微分方程称为齐次方程2解法作变量代换代入原式可分离变量的方程齐次型方程一、齐次型方程例 1 求解微分方程解微分方程的解为例 2 求解微分方程解微分方程的解为例 3抛物线的光学性质实例: 车灯的反射镜面------旋转抛物面解如图由夹角正切公式得得微分方程分离变量积分得平方化简得抛物线解令则代入化简并分离变量两边积分换回原变量或例4二、可化为齐次型的方程1定义为齐次型方程否则为非齐次型方程2
可分离变量的方程实例: 车灯的反射镜面------旋转抛物面积分得代入化简为齐次型方程.营口地区成人高等教育 QQ群 54356621方程变为营口地区成人高等教育 QQ群 54356621思考题解答营口地区成人高等教育 QQ群 54356621
所以本节只讨论或写成方程的两边同乘以 y = 0 也是方程的解但不包含在通解中为微分方程的解.分离变量衰变规律1.分离变量
Ordinary Differential Equations蔡 军 伟宁波工程学院理学院 or 例2 单摆 选取一些常数我们求解初始值问题得解为 如果微分方程中未知数依赖于两个或更多的自变量称为偏微分方程例如: 例如:为方程的隐式解n 阶方程的通解:把含有 n 个相互独立的任意常数为任意常数)当定解条件为初始条件时相应的定解问题也就为初值问题解:求出所给的函数导数
#
精品课程序 言第1章 函 数第2章 导 数第3章 定积分第4章 求导方法第5章 导数应用第6章 求积分方法第7章 定积分应用第8章 微分方程8-1 什么是微分方程精品课程序 言第1章 函 数第2章 导 数第3章 定积分第4章 求导方法第5章 导数应用第6章 求积分方法第7章 定积分应用第8章 微分方程8-2 可分离变量法精品课程序 言第1章 函 数第2章 导 数第3章 定积分第4章 求导方法第5章
高等数学课件全微分方程 机动 目录 上页 下页 返回 结束 第五节一全微分方程二积分因子法 第十二章 2152023高等数学课件判别: P Q 在某单连通域D内有连续一阶偏导数① 为全微分方程 则求解步骤:方法1 凑微分法方法2 利用积分与路径无关的条件.1. 求原函数 u (x y)2. 由 d u = 0 知通解为 u (x y) = C .一全微分方程则称为全微分
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级常微分方程 在力学物理学及工程技术等领域中为了对客观事物运动的规律性进行研究往往需要寻求变量间的函数关系但根据问题的性质常常只能得到待求函数的导数或微分的关系式这种关系式在数学上称之为微分方程微分方程又分为常微分方程和偏微分方程本章讨论的是前者 常微分方程是现代数学的一个重要分支内容十分丰富作
第五章 微分方程模型 按照内在规律或用类比法建立微分方程模型1 2)每个病人每天有效接触人数为? 且使接触的健康人致病0增加假设i0? >1didt < 0SIR模型sDP1: s0>1? ? i(t)先升后降至0? (日接触率)? ? 卫生水平?模型4? 小 s0 ? ?1 调节资金与劳动力的增长率使经济(生产率)增长每个劳动力的产值QL 单位劳动力创造的产值 2)资金与劳动力的最佳分配(
#
违法有害信息,请在下方选择原因提交举报