外分点P点位置λ>1点的平移●回归教材1.已知点P分有向线段 的比为λ则下列结论中正确的是( )A.λ可以是任意实数B.λ是不等于零的实数C.当λ<-1时点P必在 的延长线上D.当-1<λ<0时点P在 的延长线上反思归纳:在解关于定比分点的问题时相对地理解始点终点分点很重要.在PAB三个点中每个点都可以作为始点终点分点.但要注意不同的始点终点分点对应着不同的λ
2kπ-π(sinxcosx)Bsinxcosx【例1】 求下列函数的值域:(1)ytanx(x≤1)(4)ysin2x2sinxcosx3cos2x[解析] (1)设S为十字形的面积则S2xy-x22sinθcosθ-cos2θ
a∥α所有直线都α∥βa⊥β则a⊥α(1)射影相等的两条斜线段 射影较长的斜线段 (2)相等的斜线段的射影 较长的斜线段的射影 (3)垂线段比 都短.5.三余弦定理如图所示AB和平面M所成的角是αAC在平面M内AC和AB在平面M内的射影AB1所成的角是β设∠BACθ则αβθ满足关系为cosθcosαcosβ.这就叫做三余弦定
●基础知识一映射1.定义:设AB是两个集合如果按照某种对应关系f对于集合A中的 在集合B中都有 的元素和它对应那么这样的对应(包括集合AB以及集合A到集合B的对应关系f)叫做 的映射记作f:A→.象与原象:给定一个集合A到B的映射且a∈Ab∈B如果元素a和元素b对应那么我们把元素b叫做元素a的
#
●基础知识一、曲线方程的定义在直角坐标系中,如果某曲线C(看作适合某条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:1.曲线上的点的坐标;2.以这个方程的解为坐标的点;那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形).都是这个方程的解都是曲线上的点二、曲线方程的两个基本问题曲线方程的两个基本问题,一是 ,二是.已知曲线求方程的五步法(建系设点、列等式、
3.在复习时应强化不等式的应用提高应用意识.历届高考题中除单独考查不等式的试题外常在一些函数数列立体几何解析几何和实际应用的问题中涉及不等式如在实际问题中主要有构造不等式求解或构造函数求最值求最值时要注意等号成立的条件.因此在复习过程中一定要提高应用意识不断总结不等式的应用规律努力提高数学能力.b<a●易错知识一不等式的性质应用失误1.已知a>b则不等式①a2>b2 答案:①②③[命题意图] 考查
●基础知识一椭圆的定义和方程1.椭圆定义(1)平面内到两定点F1F2的距离的和等于 的点的轨迹叫椭圆.这两个定点叫做椭圆的焦点两焦点的距离叫做椭圆的焦距.(2)平面内到定点F的距离和到定直线l的距离d之比为 的点M的轨迹叫做椭圆即标准方程内容aex0失分警示:忽视了点A点B与点C构成三角形和b>a>c条件致误.同上可解得
{yy∈R且y≠0}(0∞)7.单调性法——确定函数在定义域(或某个定义域的子集)上的单调性求出函数的值域.形如y 的函数的值域均可使用此法求解该函数的值域为[ ∞) .3.值域是(0∞)的函数是( )A.yx2-x1 B.y( )1-xC.y3 1 D.ylog2x2解析:A中y∈[ ∞)C中y>1D中y≥0
#
违法有害信息,请在下方选择原因提交举报