大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • anSn.doc

    数列解题方法总结求通项an的常用方法:㈠叠乘法(前项与后项之比等于含n的式子型如)㈠数列{an}中a1=3an1=3nan求{an}的通项公式㈡叠加法(前项与后项之差等于含n的式子型如)㈠数列{an}中a1=2an1-an=3n求{an}的通项公式㈢利用Sn与an的关系(注意讨论n=1和n≥2两种情况)㈠Sn=3n-2求{an}的通项公式㈣在一个关系式中同时纯在Sn与an㈠数列{an}中 各项均为

  • 数列学案.doc

    专题1:求数列通项公式的常用方法问题1:(1)已知数列=1=3求. (2)已知数列=1=3求.问题2:(1)已知数列中=1=3求.(2)已知数列中求.问题3:(1)已知数列中=1=求.(2)已知数列中求.问题4:(1)已知数列中求. (2) 已知数列中求.(3)在数列中=求.问题5:(1)已知数列中求. (2)已知数列中 求.(3)已知数列中求.问题6:

  • 公式数列_-_副本.doc

    求通项公式的常用方法 一 公式法:利用熟知的的公式求通项公式的方法称为公式法常用的公式有等差数列或等比数列的通项公式例一 已知无穷数列的前项和为并且求的通项公式【解析】: 又 .反思:利用相关数列与的关系:与提设条件建立递推关系是本题求解的关键.跟踪训练1.已知数列的前项和满足关系.试证数列是等比数列.二 归纳法:由数列前几项用不完全归纳猜测出数列

  • 题型三_由数列前nSnan关系an.doc

    题型三 由数列的前n项和与通项的关系求通项(推荐时间:30分钟)1.已知数列{an}的前n项和为Sn且满足an2Sn·Sn-10 (n≥2)a1eq f(12).(1)求证:eq blc{rc}(avs4alco1(f(1Sn)))为等差数列(2)求an的表达式.1.(1)证明 ∵anSn-Sn-1 (n≥2)an2Sn·Sn-10 (n≥2)∴Sn-Sn-12Sn·Sn-10.∵Sn≠0

  • 数列公式.doc

    求递推数列通项公式的常用方法一 公式法例一 已知无穷数列的前项和为并且求的通项公式跟踪训练1.已知数列的前项和满足关系.试证数列是等比数列.跟踪训练2.已知数列满足.则的通项公式是二.构造法例二 (1)已知数列中求数列的通项公式. (2)已知数列中求(3)已知数列中求数列的通项公式.(4)已知数列中求三 累加法例三 已知数列满足求跟踪训练3.已知求数列通项公式.四 累乘法例四 已知数

  • 数列.doc

    数列求和的常见方法一错位相减法这种方法是在推导等比数列的前n项和公式时所用的方法这种方法主要用于求数列的前n项和其中分别是等差数列和等比数列求和求和:【练习】1数列前n项的和2求和【答案】12二分组求和有一类数列既不是等差数列也不是等比数列若将这类数列适当拆开可分为几个等差等比或常见的数列然后分别求和再将其合并即可.求数列的前项和求数列的前n项和:【练习】求数列的和【答案】三裂项法求和这是分解与组

  • 数列an=n2前nSn推导.doc

    数列an=n2的前n项和Sn推导(正宁一中 路文通 甘肃 正宁) 对于数列an=ni(i=234…)的前n项和Sn的推导是困扰很多中学生的一大问题现针对这一问题我就i=2时的推导过程给出具体过程现在有了i=2时的Sn的公式就可以将i=3时的Sn的公式依据上面的思想继续去做 n个主要思想:ni=(ni-1ni-1…ni-1) :

  • 数列前N.doc

    求数列前N项和的常用方法核心提示:求数列的前n项和要借助于通项公式即先有通项公式再在分析数列通项公式的基础上或分解为基本数列求和或转化为基本数列求和当遇到具体问题时要注意观察数列的特点和规律找到适合的方法解题一.用倒序相加法求数列的前n项和如果一个数列{an}与首末项等距的两项之和等于首末两项之和可采用把正着写与倒着写的两个和式相加就得到一个常数列的和这一求和方法称为倒序相加法我们在学知识时

  • 数列前N.doc

    求数列前n项和的常用方法核心提示:求数列的前n项和要借助于通项公式即先有通项公式再在分析数列通项公式的基础上或分解为基本数列求和或转化为基本数列求和当遇到具体问题时要注意观察数列的特点和规律找到适合的方法解题一.用倒序相加法求数列的前n项和如果一个数列{an}与首末项等距的两项之和等于首末两项之和可采用把正着写与倒着写的两个和式相加就得到一个常数列的和这一求和方法称为倒序相加法我们在学知识时不但要

  • 数列前N.doc

    #

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部