第十节函数模型及其应用[知识能否忆起]1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)axb(ab为常数a≠0)二次函数模型f(x)ax2bxc(abc为常数a≠0)指数函数模型f(x)baxc(abc为常数a>0且a≠1b≠0)对数函数模型f(x)blogaxc(abc为常数a>0且a≠1b≠0)幂函数模型f(x)axnb(abn为常数a≠0n≠0)2.三种增长型函数模型的图象与性质
第十三节导数的应用(二)利用导数研究恒成立问题及参数求解典题导入[例1] 已知函数f(x)x2ln x-a(x2-1)a∈R.(1)当a-1时求曲线f(x)在点(1f(1))处的切线方程(2)若当x≥1时f(x)≥0成立求a的取值范围.[自主解答] (1)当a-1时f(x)x2ln xx2-1f′(x)2xln x3x.则曲线f(x)在点(1f(1))处的切线的斜率为f′(1)3又f(1)0所以切
第九节函数与方程[知识能否忆起]1.函数的零点(1)定义:对于函数yf(x)(x∈D)把使f(x)0成立的实数x叫做函数yf(x)(x∈D)的零点.(2)函数的零点与相应方程的根函数的图象与x轴交点间的关系:方程f(x)0有实数根?函数yf(x)的图象与x轴有交点?函数yf(x)有零点.(3)函数零点的判定(零点存在性定理):如果函数yf(x)在区间[ab]上的图象是连续不断的一条曲线并且有f(a
第七节指数与指数函数[知识能否忆起]一根式1.根式的概念根式的概念符号表示备注如果xna那么x叫做a的n次方根n>1且n∈N当n是奇数时正数的n次方根是一个正数负数的n次方根是一个负数eq r(na)零的n次方根是零当n是偶数时正数的n次方根有两个这两个数互为相反数±eq r(na)(a>0)负数没有偶次方根2.两个重要公式(1)eq r(nan)eq blc{rc (avs4alc
第六节二次函数与幂函数[知识能否忆起]一常用幂函数的图象与性质函数特征性质yxyx2yx3yxeq f(12)yx-1图象定义域RRR{xx≥0}{xx≠0}值域R{yy≥0}R{yy≥0}{yy≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞0]减(0∞)增增增(-∞0)和(0∞)减公共点(11)二二次函数1.二次函数的定义形如f(x)ax2bxc(a≠0)的函数叫做二次函数.2.二次函数解析式的
第四节函数ysin(ωxφ)的图象及三角函数模型的简单应用[知识能否忆起]一yAsin(ωxφ)的有关概念yAsin(ωxφ)(A>0ω>0)x∈[0∞)表示一个振动量时振幅周期频率相位初相ATeq f(2πω)feq f(1T)eq f(ω2π)ωxφφ二用五点法画yAsin(ωxφ)一个周期内的简图用五点法画yAsin(ωxφ)一个周期内的简图时要找五个关键点如下表所示:x-eq
数列的综合应用[知识能否忆起]1.数列在实际生活中有着广泛的应用其解题的基本步骤可用图表示如下:2.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时该模型是等差模型增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时该模型是等比模型这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定随项的变化而变化时应考虑是an
第四节数_列_求_和[知识能否忆起]一公式法1.如果一个数列是等差数列或等比数列则求和时直接利用等差等比数列的前n项和公式注意等比数列公比q的取值情况要分q1或q≠.一些常见数列的前n项和公式:(1)1234…neq f(n?n1?2)(2)1357…2n-1n2(3)2468…2nn2n.二非等差等比数列求和的常用方法1.倒序相加法如果一个数列{an}首末两端等距离的两项的和相等或等于同一常
第二节等差数列及其前n项和[知识能否忆起]一等差数列的有关概念1.定义:如果一个数列从第2项起每一项与它的前一项的差都等于同一个常数那么这个数列就叫做等差数列.符号表示为an1-and(n∈Nd为常数).2.等差中项:数列aAb成等差数列的充要条件是Aeq f(ab2)其中A叫做ab的等差中项.二等差数列的有关公式1.通项公式:ana1(n-1).前n项和公式:Snna1eq f(n?n-1
等比数列及其前n项和[知识能否忆起]1.等比数列的有关概念(1)定义:如果一个数列从第2项起每一项与它的前一项的比等于同一个常数(不为零)那么这个数列就叫做等比数列.这个常数叫做等比数列的公比通常用字母q表示定义的表达式为eq f(an1an)q(n∈Nq为非零常数).(2)等比中项:如果aGb成等比数列那么G叫做a与b的等比中项.即:G是a与b的等比中项?aGb成等比数列?G2.等比数列的有
违法有害信息,请在下方选择原因提交举报