第九单元 平面向量考点一平面向量的线性运算1(2015年全国Ⅱ卷)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ= ?【解析】∵λa+b与a+2b平行,∴λa+b=t(a+2b)(t∈R),即λa+b=ta+2tb,∴λ=t,1=2t,解得λ=12,t=12【答案】122(2015年全国Ⅰ卷)设D为△ABC所在平面内一点,BC=3CD,则( )=-13AB+43AC=1
第十单元 数列考点一等差数列1(2017年全国Ⅰ卷)记Sn为等差数列{an}的前n项和若a4+a5=24,S6=48,则{an}的公差为( )A1 B2 C4 D8【解析】a4+a5=a1+3d+a1+4d=24,S6=6a1+6×52×d=48,联立2a1+7d=24, ①6a1+15d=48, ②由①×3-②,得(21-15)×d=24,即6d=24,所以d
第十四单元 空间向量及其应用考点一利用空间向量求线面角的大小1(2017年北京卷)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=6,AB=4(1)求证:M为PB的中点(2)求二面角B-PD-A的大小(3)求直线MC与平面BDP所成角的正弦值【解析】(1)设AC,BD交于点E,连接ME,因为PD∥平面MAC,平
第七单元 三角函数考点一 三角函数求值1(2017年北京卷)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称若sinα=13,则cos(α-β)= ?【解析】∵α与β关于y轴对称,∴α+β=π+2kπ(k∈Z),则sinα=sinβ=13,∴cosα=223,cosα=-cosβ,∴cos(α-β)=-cos2α+sin2α=-79【答案】-792(201
第十九单元 计数原理与概率考点一排列与组合1(2017年全国Ⅱ卷)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A12种 B18种 C24种 D36种【解析】由题意可得其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C31×C42×A22=36(种),或列式为C31×C42×C21=3×4×32×2=36(种)故
第十一单元 不等式考点一不等式的性质及不等式的解法1(2017年山东卷)若ab0,且ab=1,则下列不等式成立的是( )Aa+1bb2alog2(a+b)Bb2alog2(a+b)a+1bCa+1blog2(a+b)b2a2(a+b)a+1bb2a【解析】由题意知a1,0b1,所以b2a1,log2(a+b)log22ab=1,2a+1ba+1ba+b?a+1blog2(a+b)故选B
2013年全国高考理科数学试题分类汇编5:平面向量一选择题 AUTONUM Arabic MERGEFORMAT .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中记以A为起点其余顶点为终点的向量分别为以D为起点其余顶点为终点的向量分别为.若分别为的最小值最大值其中则满足( )A.B.C.D.【答案】D. AUTONUM Arabic MERGEF
第三单元 基本初等函数(Ⅰ)考点一化简求值类1(2017年北京卷)根据有关,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080则下列各数中与MN最接近的是( )(参考数据:lg 3≈048)A1033 B1053 C1073 D1093【解析】由题意得,lgMN=lg33611080=lg 3361-lg 1080=361lg 3-8
第十八单元 统计初步考点一数据分析1(2017年全国Ⅲ卷)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是( )A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小
第二十二单元 选考模块考点一极坐标与参数方程1(2017年全国Ⅰ卷)在直角坐标系xOy中,曲线C的参数方程为x=3cosθ,y=sinθ(θ为参数),直线l的参数方程为x=a+4t,y=1-t(t为参数)(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为17,求a【解析】(1)曲线C的普通方程为x29+y2=1当a=-1时,直线l的普通方程为x+4y-3=0由x+4
违法有害信息,请在下方选择原因提交举报