112复变函数(续)113解析函数114初等函数1122、复变函数的极限与连续性1121、复变函数的概念11122、复变函数的极限与连续性1、复变函数的极限1)、复变函数的极限的定义2)、复变函数极限存在的充要条件3)、复变函数极限的运算法则22、复变函数的连续性1)、连续性的定义定义11232)、连续的充分必要条件定理112333)、连续函数的运算定理1124(1)连续函数的和、差、积、商(分母
?复变函数与解析函数?复变函数的积分?复变函数的级数与留数定理复变函数1111复数及其运算112复变函数113解析函数第11章 复变函数与解析函数114初等函数2111、复数及其运算1、复数的定义(2)复数的定义对任何实数x,y,称z=x +yi复数,x 和y 分别称为z 的实部和虚部记作x=Re(z),y =Im(z)2、两个复数相等,当且仅当其实部和虚部分别相等;4、两个复数不能比较大小。3、
121复变函数积分的概念122积分基本定理123积分基本公式第12章 复变函数的积分11211、复函数积分的概念及其简单性质1 有向曲线121、复变函数积分的概念2 2 积分的定义定义3 3 积分性质由积分定义得:41212 积分存在的条件及其计算法注:5由曲线积分的计算法得67891011121314122、积分基本定理问题:复积分的积分值与路径无关,或沿封闭曲线的积分值为零的条件是什么?151
134 留数与留数定理1341、孤立奇点1、孤立奇点的定义定义例如----z=0为孤立奇点----z=0及z=1/n? (n = ?1 , ?2 ,…)都是它的奇点----z=1为孤立奇点1这说明奇点未必是孤立的。22、孤立奇点的分类以下将f (z)在孤立奇点的邻域内展成洛朗级数,根据展开式的不同情况,将孤立点进行分类。考察:特点:没有负幂次项特点:只有有限负幂次项特点:有无穷多负幂次项3定义设z
应该注意:上述定义中 的方式是任意的复变函数的导数具有与实函数同样的求导法则 例3 讨论反之不一定成立于是解:例题3 -182解析函数的虚部为实部的共轭调和数解:性质: (3)chz为偶函数 shz为奇函数定义: 今后我们应用对数函数Ln z时 指的都是它在除去原点及负实轴的平面内的某一单值分支.---- n值函数
#
第二章解析函数§21解析函数的概念1 复变函数的导数 定义:存在, 则就说f (z)在 z0可导, 此极限值就称为f (z)在 z0 的导数,记作容易证明:如果 f (z) 在区域D内处处可导, 就说 f (z) 在D内可导例1 求 f (z) = z2 的导数。[解] 因为所以f '(z) = 2z 复变函数的导数具有与实函数同样的求导法则 。(即f (z) = z2 在复平面处处可导。)例2
§42复变函数项级数一、基本概念1 复变函数项级数一、基本概念2 复变函数项级数收敛的定义为和函数,D 为收敛域。二、幂级数1 幂级数的概念二、幂级数2 阿贝尔 ( Abel ) 定理对于幂级数 ,有二、幂级数2 阿贝尔 ( Abel ) 定理(1) 如果级数在 点收敛,则它在上绝对收敛;定理(2) 如果级数在 点发散,则它在上发散。证明(2) 反证法:与已知条件矛盾。二、幂级数3 收敛圆与收敛半
133 洛朗级数1331、洛朗级数的定义1、问题的引入由上一节知f (z) 在 ?z - z0?R 内解析,则在该圆域内, f (z)可展开成 z - z0的幂级数。若 f (z) 在z0点不解析,但在圆环域 R1?z - z0?R2 内解析,那么,f (z)能否用级数表示呢?例如,1本节将讨论在以z 0为中心的圆环域内解析的函数的级数表示法。22、洛朗级数的定义---含有正负幂项的级数定义形如-
833、柱面坐标系下的三重积分的计算法就称为点M 的柱坐标直角坐标与柱面坐标的关系:坐标面分别为圆柱面半平面平面1柱面坐标1 如图,柱面坐标系中的体积元素为3.柱面坐标系中的三重积分的形式 2.柱面坐标系中的体积元素4.计算方法:定限方法同直角坐标,把边界化成 柱面坐标方程。 2解投影为:3例2.将下列累次积分化为柱面坐标下的累次积分,并计算456内容小结1、会选取柱面坐标计算三重积分选择柱面坐
违法有害信息,请在下方选择原因提交举报