(本文件空白请自行建立)
(本文件空白,请自行建立)
(本文件空白,请自行建立)
多元函数的概念定义设是平面上的一个非空点集如果对于内的任一点按照某种法则都有唯一确定的实数与之对应则称是上的二元函数它即其中称为自变量称为因变量.该函数的定义域数集称为该函数的值域.处的函数值记为在点集称为注:关于二元函数的定义域我们仍作如下约定:如果一个用算式表示的函数则该函数的定义域理解为没有明确指出定义域多元函数的概念如果一个用算式表示的函数则该函数的定义域理解为没有明确指出定义域多元函数的
罗尔(Rolle)定理几何观察若函数在续在开区间内可导且在区间端点的函数值相等即则在内至少有一点使证在连续必存在最大值和最小值若则故都有若上连闭区间证在连续必存在最大值和最小值若则故都有若证在连续必存在最大值和最小值若则故都有若最值不可能同时在端点取得.不妨设则在内使有故由费马引理知证毕.至少存在一点不妨设则在内使有故由费马引理知证毕.至少存在一点不妨设则在内使有故由费马引理知证毕.至少存在一点例
定积分的微元法从面积表为定积分的步骤其主要步骤如下:(1)根据具体问题分变量并确定它的变化区间出相应于这个区间可抽象出在应用学科中—微元法(也称为元素法).表示为定积分的方法广泛采用的将所求量(总量)选取一个积例如 为积分变量的一个区间微元任取求的近似值微元上部分量求出所求总量的微元即(2)根据写出表示总量 的定积分由分割写出微元由微元写出积分定积分的微元法总量 的定积分定积分的微元法
聚点与孤立点如果按点的邻近处是否有无穷多个点来分类则有(1)点的去心领域内总有点集中的点则称是的聚点(2)如果存在点的某个领域使得如果对于任意给定的设点则称点为的孤立点.注:内点一定是聚点边界点可能是聚点点集的聚点可以属于也可以不属于例如点集中聚点与孤立点点集的聚点可以属于也可以不属于例如点集中聚点与孤立点点集的聚点可以属于也可以不属于例如点集中的内点都是聚点边界上的点都是既是边界点也是聚点但不属
(本文件空白请自行建立)
定积分的微元法从面积表为定积分的步骤其主要步骤如下:(1)根据具体问题分变量并确定它的变化区间出相应于这个区间可抽象出在应用学科中—微元法(也称为元素法).表示为定积分的方法广泛采用的将所求量(总量)选取一个积例如 为积分变量的一个区间微元任取求的近似值微元上部分量求出所求总量的微元即(2)根据写出表示总量 的定积分由分割写出微元由微元写出积分定积分的微元法总量 的定积分定积分的微元法
原函数的概念定义从上述后面两个例子可见:唯一的.设 是定义在空间 上的函数若存在函数 对任何 均有或则称函数 为 在区间 上的原函数.例如因为故 是 的一个原函数因为故 是 的一个原函数因为故 是 的一个原函数一个函数的原函数不是原函数的概念从上述后面两个例子
违法有害信息,请在下方选择原因提交举报