立体几何(Ⅱ)——角与距离 HYPERLINK :.zxxk 一知识网络 HYPERLINK :.zxxk HYPERLINK :.zxxk 二高考考点 1.异面直线所成的角异面直线间的距离.其中异面直线所成的角是重点也是难点 2.直线和平面所成的角直线与平面的距离.其中在计算题中直线和平面所成的角
本来源于《七彩教育网》:.7caiedu高考数学快速提升成绩题型训练——立体几何中求角与距离1. 四棱锥P—ABCD的底面是边长为a的正方形PB⊥面ABCD. (1)若面PAD与面ABCD所成的二面角为60°求这个四棱锥的体积(2)证明无论四棱锥的高怎样变化面PAD与面PCD所成的二面角恒大于90°2 如图直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形∠A
2009届高考数学快速提升成绩题型训练——立体几何中求角与距离1. 四棱锥P—ABCD的底面是边长为a的正方形PB⊥面ABCD. (1)若面PAD与面ABCD所成的二面角为60°求这个四棱锥的体积(2)证明无论四棱锥的高怎样变化面PAD与面PCD所成的二面角恒大于90°2 如图直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形∠ACB=900AC=1C点到AB1的距离为CE=D为AB
立体几何第三课一知识点1.空间中各种角包括:异面直线所成的角直线与平面所成的角以及二面角 (1)异面直线所成的角的范围是求两条异面直线所成的角的大小一般方法是通过平行移动直线把异面问题转化为共面问题来解决具体步骤如下:①作平行四边形对边②作三角形中位线(2)直线与平面所成的角的范围是求直线和平面所成的角用的是射影转化法具体步骤如下:①找过斜线上一点与平面垂直的直线②连结垂足和斜足得出斜线在平面的射
响水二中高三数学(理)一轮复习 作业 第八编 立体几何 主备人 张灵芝 总第42期§8.8 立体几何中的向量问题(Ⅱ)——空间角与距离班级 等第 一填空题1.在正方体ABCD—A1B1C1D1中M是AB的中点则sin〈〉的值等于 .2.正方体ABCD—A1B1C1D1的棱长为1O是A1C1的中点则
响水二中高三数学(理)一轮复习 学案 第八编 立体几何 主备人 张灵芝 总第42期§8.8 立体几何中的向量问题(Ⅱ)——空间角与距离班级 等第 基础自测1.已知两平面的法向量分别为m=(010)n=(011)则两平面所成的二面角为 .2.二面角的棱上有AB两点直线ACBD分别在这个二面角的两个半
响水二中高三数学(理)一轮复习 教案 第八编 立体几何 主备人 张灵芝 总第42期§8.8 立体几何中的向量问题(Ⅱ)——空间角与距离基础自测1.已知两平面的法向量分别为m=(010)n=(011)则两平面所成的二面角为 .答案 45°或135°2.二面角的棱上有AB两点直线ACBD分别在这个二面角的两个半平面内且都垂直于AB.已知AB=4AC=6BD=
§8.8 立体几何中的向量方法(Ⅱ)——求空间角与距离(时间:45分钟 满分:100分)一选择题?每小题7分共28分?1. 如图所示已知正方体ABCD—A1B1C1D1EF分别是正方形A1B1C1D1和ADD1A1的中心则EF和CD所成的角是? ?A.60° B.45° C.30° D.90°2.在正方体ABCD—A1B1C1D1中M是AB的中点则sin
立体几何中的角度与距离问题【基础知识】一.空间角度问题(一)理解空间中各种角的定义及其取值范围1.异面直线所成的角直线与平面所成的角及二面角的概念2.各种角的取值范围:(1)异面直线所成的角的取值范围是:0°? ? ≤90°(2)直线于平面所成的角的取值范围是: 0°≤ ? ≤90°(3)二面角的大小可以用它的平面角来度量通常认为二面角平面角的取值范围是: 0°? ? ≤180°(二)空间中
第8课时 空间的角基础过关1.两异面直线所成的角:直线ab是异面直线经过空间一点O分别引直线a ab b把直线a和b所成的 或 叫做两条异面直线ab所成的角其范围是 .2.直线和平面所成的角:平面的一条斜线和它在平面上的 所成的 角叫做这条斜线和平面所成的角.规定: ① 一条直线垂直于平面我们说它们所成
违法有害信息,请在下方选择原因提交举报