第十一章 曲线积分与曲面积分一基本要求及重点难点1. 基本要求(1) 了解第一类曲线积分(即对弧长的曲线积分)的概念及其物理与几何意义并掌握其计算方法(2) 了解第二类曲线积分(即对坐标的曲线积分)的概念及物理意义并掌握其计算方法能熟练应用曲线积分计算力场沿曲线所做的功(3) 了解两类曲线积分的性质及两类曲线积分的关系(4) 掌握格林公式的条件和结论熟练掌握利用格林公式把第二类曲线积分化为二重积
(3) 计算方法A(10)x考虑流向曲面指定侧的流量γ(2) 计算方法
第8章 曲线积分与曲面积分 向量值函数在有向曲线上的积分 第二型曲线积分概念与形式恒力沿直线方向做功变力沿曲线运动取微元则平面曲线空间曲线性质计算方法1.设参数化定积分2.平面闭曲线上积分-用格林公式其中L是D的取正向的边界曲线D为单连通区域PQ与上有连续一阶偏导数3.对于积分与路径无关的可自选路径4.积分与路径无关及偏导数于上连续下列四个命题等价(1)0对D内任意闭曲线C.(2)积分与路径
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第六章 定积分与二重积分 曲线积分与曲面积分第一节 定积分的概念与性质 一两个实例 1. 曲边梯形的面积 曲边梯形:由连续曲线y=f(x)和三条直线x=a x=b和y=0(即x轴)所围成的图形y=f(x)Oxyab底:[a b]高:y=f(x)(变化的)曲边:y=f
第十章曲线积分与曲面积分
曲线积分与曲面积分 §10·1 对弧长的曲线积分计算下列曲线积分:1 其中是以O(00)A(10)B(01)为顶点三角形边界.2 其中为直线与抛物线所围区域的边界.3 其中为半圆的边界4 其中为曲线弧 5 其中为双纽线右面一瓣6其中为圆周求曲线的质量设其线密度为§10·2 对坐标的曲线积分1 计算其中为抛物线上从点(00)到点(11)的一段弧2计算其中是由坐标轴及直线所构成的
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级Gauss公式物理意义---散度小结 思考题 作业第六节 Gauss公式与散度第九章 曲线积分与曲面积分 高斯 GaussK.F. (1777–1855) 德国数学家物理学家天文学家1 Green公式把平面上的闭曲线积分与本节的Gauss公式给出了空间闭曲面上的曲面积分与曲面所围空间区域上的它有明确的
第一步:光滑的如果当各小块曲面的直径 第i 小块曲面的面积)记为对面积的曲面积分第一类则其重心坐标为:第一类曲面积分(3)投影域:抛物面第一类曲面积分投影域第一类曲面积分x2y是y的奇函数. 第一类曲面积分的概念是
小结 思考题 作业单连通区域Green公式及其应用格林定理(定理9-1)其边界曲线Green公式及其应用积分区域的可加性通过加辅助线将D划分成若 若区域不止由一条闭曲线域D来说都是正向.Green公式的实质Green公式所围成的面积.的正向. 计算此积分路径使之构成的方程为则其中L为一条无重点即L为包围原点在内的任一逆时针方向分析1. 平面曲线积分与路径无关的定义设D是一个平面上的单连通
#
违法有害信息,请在下方选择原因提交举报