单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级中山学院经济与管理系第3章 多元线性回归模型3.1 模型的建立及其假定条件 1 基本概念 在许多实际问题中我们所研究的因变量的变动可能不仅与一个解释变量有关因此有必要考虑线性模型的更一般形式即多元线性回归模型:
§ 多元线性回归模型 其中假设4随机项满足正态分布 一普通最小二乘估计 二最大或然估计 三矩估计 四参数估计量的性质 五样本容量问题 六估计实例 L例:在例的家庭收入-消费支出例中 Y的随机抽取的n组样本观测值的联合概率 该正规方程组 可以从另外一种思路来导: 同时随着样本容量增加参数估计量具有: 渐近无偏性渐近有效性一致性 ⒈ 最小样本容量Eview
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版
#
#
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第3章 多元线性回归模型 多元线性回归模型与假定条件最小二乘法(OLS)最小二乘估计量的特性可决系数显著性检验与置信区间预测预测的评价指标 建模过程中应注意的问题 案例分析第3章 多元线性回归模型 3.1 多元线性回归模型与假定条件经济意义:xt j
数据其中2. 多元回归模型的假设假设2:二元回归的样本回归函数为:OLS估计量的方差和标准误2得到: 多元回归最小二乘估计量的性质例1 期望扩充菲利普斯曲线统计上不显著异于0yt=?0?1x1t?2x2t?t R2的重要性质:模型中解释变量个数的非减函数即随着解释变量个数的增加 R2几乎必然增大不减小易给人错觉:要使模型拟合得更好只要在方程中加入新的变量即可校正的判定系数定义如下:对有k个解
双对数模型——应变量和解释变量都是对数形式斜率 系数可以衡量应变量Y关于解释变量X的弹性也就是 表示当X每变动一个百分点时应变量Y的均值变动的 百分比7911——被解释变量样本观测值的 阶列向量——解释变量样本观测值的 阶矩阵——未知参数的 阶列向量——随机误差项的 阶列向量 一普通最小二乘法(OLS)2532
◆ 学习目的◆多元线性回归模型的参数估计其中Y为被解释变量 为样本容量 第一节 多元线性回归模型的 矩阵表示与基本假设记 包括对解释变量的假设对随机误差项的假设对模型设定的假设几个方面主要如下:方法 一参数的普通最小二乘估计由式(3-8)可直接求得普通最小二乘估计量为 121513101114131513121110151513121412111015121.线性性 二
第一节 多元线性回归模型及古典假定多元线性回归模型的一般形式 的总体条件均值表示为多个解释变量的函数 总体回归函数也可表示为: 二多元线性回归模型的矩阵表示 总体回归函数 或样本回归函数 或 其中:
违法有害信息,请在下方选择原因提交举报