一、选择题1.函数y=sin(2x-eq \f(π,3))在区间[-eq \f(π,2),π]上的简图是( )解析:选A令x=0得y=sin(-eq \f(π,3))=-eq \f(\r(3),2),排除B,D由f(-eq \f(π,3))=0,f(eq \f(π,6))=0,排除C,故选A2.(2013·潍坊调研)将函数y=cos 2x的图象向右平移eq \f(π,4)个单位长度,得到函数
一、选择题1.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )Aeq \f(1,8) Beq \f(1,16)Ceq \f(1,27)Deq \f(3,8)解析:选C一个棱长为3的正方体由27个单位正方体组成,由题意知,蜜蜂“安全飞行”的区域即为27个单位正方体中最中心的
一、选择题1.已知向量a=(2,-3,5)与向量b=(3,λ,eq \f(15,2))平行,则λ=( )Aeq \f(2,3) Beq \f(9,2)C.-eq \f(9,2)D.-eq \f(2,3)解析:选C由a∥b得,eq \f(2,3)=eq \f(-3,λ)=eq \f(5,\f(15,2)),解得λ=-eq \f(9,2)故选C2.有以下命题:①如果向量a,b与
一、选择题1.(2012·高考安徽卷)(log29)·(log34)=( )Aeq \f(1,4) Beq \f(1,2)C.2D.4解析:选D法一:原式=eq \f(lg 9,lg 2)·eq \f(lg 4,lg 3)=eq \f(2lg 3·2 lg 2,lg 2·lg 3)=4 故选D法二:原式=2log23·eq \f(log24,log23)=2×2=4 故选D
一、选择题1.若k∈R,则方程eq \f(x2,k+3)+eq \f(y2,k+2)=1表示焦点在x轴上的双曲线的充要条件是( )A.-3k-2 B.k-3C.k-3或k-2D.k-2解析:选A由题意可知,eq \b\lc\{\rc\ (\a\vs4\al\co1(k+30,,k+20,))解得-3k-2 故选A2.(2012·高考福建卷)已知双曲线eq \f(x2,a2)-e
一、选择题1.(2013·南阳模拟)在证明命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的过程:“cos4θ-sin4θ=(cos2θ+sin2θ)(cos2θ-sin2θ)=cos2θ-sin2θ=cos 2θ”中应用了( )A.分析法B.综合法C.分析法和综合法综合使用D.间接证法解析:选B从已知条件出发,推出要证的结论,满足综合法.故选B2.(2013·洛阳调研)用反证法证
1.若点P在角eq f(23)π的终边上且OP2则点P的坐标为( )A.(1eq r(3)) B.(eq r(3)-1)C.(-1-eq r(3)) D.(-1eq r(3))答案:D2.(2011·高考山东卷)若点(a9)在函数y3x的图象上则taneq f(aπ6)的值为( )A.0 B.eq f(r(3)3)C.1 D
一、选择题1.已知点P(sin eq \f(5π,4),cos eq \f(3π,4))落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角( )A.一 B.二C.三D.四解析:选C因P点坐标为(-eq \f(\r(2),2),-eq \f(\r(2),2)),∴P在第三象限.故选C2.若一扇形的圆心角为72°,半径为20 cm,则扇形的面积为( )A.
一、选择题1.(2013·深圳调研)sin 330°=( )Aeq \f(1,2) B.-eq \f(1,2)Ceq \f(\r(3),2)D.-eq \f(\r(3),2)解析:选 330°=sin(360°- 30°) ,=sin(-30°)=-eq \f(1,2)故选B2.已知cos(eq \f(π,4)+α)=-eq \f(1,2),则sin(eq \f(π,4)-
一、选择题1.(2013·山西考前适应性训练)eq \f(sin 20°cos 20°,cos 50°)=( )A.2 Beq \f(\r(2),2)Ceq \r(2)Deq \f(1,2)解析:选Deq \f(sin 20°cos 20°,cos 50°)=eq \f(\f(1,2)sin 40°,cos 50°)=eq \f(\f(1,2)sin 40°,sin 40°)
违法有害信息,请在下方选择原因提交举报