大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 2016).doc

    第四节基本不等式[知识能否忆起]一基本不等式eq r(ab)≤eq f(ab2)1.基本不等式成立的条件:a>0b>.等号成立的条件:当且仅当ab时取等号.二几个重要的不等式a2b2≥2ab(ab∈R)eq f(ba)eq f(ab)≥2(ab同号).ab≤eq blc(rc)(avs4alco1(f(ab2)))2(ab∈R)eq blc(rc)(avs4alco1(f(a

  • 2016关系与).doc

    第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a-b>0?a>ba-b0?aba-b<0?a<.不等式的基本性质性质性质内容注意对称性a>b?b<a?传递性a>bb>c?a>c?可加性a>b?ac>bc?可乘性eq blc rc}(avs4alco1(a>bc>0))?ac>bcc的符号eq blc rc}(avs4alco1(a>bc<0))?ac<bc同向可

  • 2016元二次及其法().doc

    第二节一元二次不等式及其解法[知识能否忆起]一元二次不等式的解集二次函数yax2bxc的图象一元二次方程ax2bxc0的根与一元二次不等式ax2bxc>0与ax2bxc<0的解集的关系可归纳为:判别式Δb2-4acΔ>0Δ0Δ<0二次函数yax2bxc (a>0)的图象一元二次方程ax2bxc0(a≠0)的根有两相异实根xx1或xx2有两相同实根xx1无实根一元二次不等式的解集ax2bxc>0(a

  • 2016列求和().doc

    第四节数_列_求_和[知识能否忆起]一公式法1.如果一个数列是等差数列或等比数列则求和时直接利用等差等比数列的前n项和公式注意等比数列公比q的取值情况要分q1或q≠.一些常见数列的前n项和公式:(1)1234…neq f(n?n1?2)(2)1357…2n-1n2(3)2468…2nn2n.二非等差等比数列求和的常用方法1.倒序相加法如果一个数列{an}首末两端等距离的两项的和相等或等于同一常

  • 2016与方程().doc

    第九节函数与方程[知识能否忆起]1.函数的零点(1)定义:对于函数yf(x)(x∈D)把使f(x)0成立的实数x叫做函数yf(x)(x∈D)的零点.(2)函数的零点与相应方程的根函数的图象与x轴交点间的关系:方程f(x)0有实数根?函数yf(x)的图象与x轴有交点?函数yf(x)有零点.(3)函数零点的判定(零点存在性定理):如果函数yf(x)在区间[ab]上的图象是连续不断的一条曲线并且有f(a

  • 2016归纳法(理)().doc

    第七节数学归纳法(理)[知识能否忆起]数学归纳法一般地证明一个与正整数n有关的命题可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N)时命题成立(2)(归纳递推)假设nk(k≥n0k∈N)时命题成立证明当nk1时命题也成立.只要完成这两个步骤就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.[小题能否全取]1.用数学归纳法证明3n≥n3(n∈Nn≥3)第

  • 2016的应用(二)().doc

    第十三节导数的应用(二)利用导数研究恒成立问题及参数求解典题导入[例1] 已知函数f(x)x2ln x-a(x2-1)a∈R.(1)当a-1时求曲线f(x)在点(1f(1))处的切线方程(2)若当x≥1时f(x)≥0成立求a的取值范围.[自主解答] (1)当a-1时f(x)x2ln xx2-1f′(x)2xln x3x.则曲线f(x)在点(1f(1))处的切线的斜率为f′(1)3又f(1)0所以切

  • 2016与指).doc

    第七节指数与指数函数[知识能否忆起]一根式1.根式的概念根式的概念符号表示备注如果xna那么x叫做a的n次方根n>1且n∈N当n是奇数时正数的n次方根是一个正数负数的n次方根是一个负数eq r(na)零的n次方根是零当n是偶数时正数的n次方根有两个这两个数互为相反数±eq r(na)(a>0)负数没有偶次方根2.两个重要公式(1)eq r(nan)eq blc{rc (avs4alc

  • 2016列的综合应用().doc

    数列的综合应用[知识能否忆起]1.数列在实际生活中有着广泛的应用其解题的基本步骤可用图表示如下:2.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时该模型是等差模型增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时该模型是等比模型这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定随项的变化而变化时应考虑是an

  • 2016列及其前n项和().doc

    第二节等差数列及其前n项和[知识能否忆起]一等差数列的有关概念1.定义:如果一个数列从第2项起每一项与它的前一项的差都等于同一个常数那么这个数列就叫做等差数列.符号表示为an1-and(n∈Nd为常数).2.等差中项:数列aAb成等差数列的充要条件是Aeq f(ab2)其中A叫做ab的等差中项.二等差数列的有关公式1.通项公式:ana1(n-1).前n项和公式:Snna1eq f(n?n-1

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部