#
#
#
#
几何全等辅助线之截长补短【思考】 如图,在△ABC中,∠B=2∠C,∠BAC的平分线AD交BC于点D。求证:AB+BD=AC。 【例1】 已知:在△ABC中,AB=CD-BD,AD⊥BC,求证:∠B=2∠C。 【例2】如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD。 【例3】 △ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于
\* MERGEFORMAT 3 几何全等辅助线之截长补短模块一:集中火力知识点一、全等三角形 1.用途 用于证明边相等、角相等或将已知条件的边角相等转移。 2.判定定理:(4+1) ①三边对应相等的两个三角形全等。(SSS) ②两边和它们的夹角对应相等的两个三角形全等。(SAS) ③两角和它们的夹边对应相等的两个三角形全等。(ASA) ④有两角及其一角的对边对应相等的两个三角形全等。(A
截长补短法在角的平分线问题中的运用吴锋 江苏省通州市刘桥中学图1-1人教八年级上册课本中在全等三角形部分介绍了角的平分线的性质这一性质在许多问题里都有着广泛的应用.而截长补短法又是解决这一类问题的一种特殊方法在无法进行直接证明的情形下利用此种方法常可使思路豁然开朗.请看几例.已知如图1-1在四边形ABCD中BC>ABAD=DCBD平分∠ABC.求证:∠BAD∠BCD=180°.分析:因为平角等于
例如:已知如图6-1:在△ABC中AB>AC∠1=∠2P为AD上任一点 求证:AB-AC>PB-PC 证明:(补短法)延长AC至M使AM=AB连接PM 在△ABP和△AMP中 AB=AM (辅助线作法) ∠1=∠2 (已知) AP=AP (公共边) ∴△ABP≌△AMP (SAS) ∴PB=PM
1.如图正方形ABCD中∠1=∠2点Q在DC上点P在BC上求证:PA=PBDQ证明:延长PB到E使BEDQ连接AE ∵AD=AB∠D=∠ABE90°∴△ABE≌△ADQ 得∠3=∠2∠E=∠5=∠1∠4 又∠1=∠2 ∴∠1=∠3∴∠PAE=∠3∠4 ∴∠PAE=∠E ∴PAPEPBBE=PBDQ取长法补短法不懂的同学进来参考下在三角形ABC中∠C=2∠BAD是△ABC的角平分线∠1=∠B请证明:
370份精品奥数 需要购买请联系QQ971063715第九讲全等三角形中的截长补短中考要求板块考试要求A级要求B级要求C级要求全等三角形的性质及判定会识别全等三角形掌握全等三角形的概念判定和性质会用全等三角形的性质和判定解决简单问题会运用全等三角形的性质和判定解决有关问题知识点睛全等三角形的性质:对应角相等对应边相等对应边上的中线相等对应边上的高相等对应角的角平分线相等面积相等.寻找对应
违法有害信息,请在下方选择原因提交举报