第三节 函数的性态(二)一、曲线凹凸的定义二、曲线凹凸的判定三、曲线的拐点及其求法第四章四、曲线的渐近线一、曲线凹凸的定义问题:如何研究曲线的弯曲方向图形上任意弧段位于所张弦的上方(凸函数)图形上任意弧段位于所张弦的下方(凹函数)二、曲线凹凸的判定定理1例1解注意到,定义 设f (x)?C(U(x0)), 若曲线 y = f (x)在点 (x0, f (x0))的左右两侧凹凸性相反, 则称点(x0
第三节 函数的性态(三)一、函数图形的描绘二、作图举例三、小结第四章一、图形描绘的步骤利用函数特性描绘函数图形第一步第二步第三步第四步 确定函数图形的水平、铅直渐近线、斜渐近线以及其他变化趋势;第五步例1 描绘f (x) = 2xe–x的图形解: (1) 函数定义域为(??, +?),连续(2)f ' (x) = 2e–x –2xe–x = 2(1 –x)e–x f '' (x) = –2e–x
第三节 函数的性态(一)一、函数的单调性二、函数的极值三、函数的最值第四章1、单调性的判别法定理一、函数的单调性证:由拉格朗日中值定理,得例1解注意:函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性.例2解2、单调区间求法定义:若函数在其定义域的某个区间内是单调的,则该区间称为函数的单调区间导数等于零的点和不可导点,可能是单调区间的
多态性 虚函数 纯虚函数与抽象类 运算符重载虚函数是动态联编的基础是非静态的成员函数在类的声明中在函数原型之前写virtualvirtual 只用来说明类声明中的原型不能用在函数实现时具有继承性基类中声明了虚函数派生类中无论是否说明同原型函数都自动为虚函数本质:不是重载声明而是覆盖调用方式:通过基类指针或引用执行时会根据指针指向的对象的类决定调用哪个函数9void fun(Point s){()
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级6 函数性态的研究 函数的单调性极值 最值 凹凸性 初等函数的定性作图 研究内容研究方法 用导数及中值定理 1一函数的单调性(monotonicity)单调减情况:单调增情况:2定理 1 (函数单调性的判定-P.147)(简述证明.)3 对于单调减的情况
第四节 正态随机变量的线性函数的分布数学与信息技术系
[最新考纲展示] 1.结合具体函数,了解函数奇偶性的含义. 2会运用函数的图象理解和研究函数的奇偶性.第三节 函数的奇偶性与周期性函数的奇偶性____________________[通关方略]____________________ 函数奇偶性的几个重要结论(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0(2)如果函数f(x)是偶函数,那么f(x)=f(|x|
请交作业三一阶逻辑推理补充题:1,2P55: 17P74: 9,11(1)(4),12(1)(4),13(1),14(2)P75: 15, 16(2)(4)(6), 17(1),18,19,21二元关系补充题:P77: 例42(3)(4)作业讲评二P33: 10, 15, 19(1)(3)(5)P54: 3, 7, 15(2)P3310用给定联结词集合表示公式①{?, ?} ②{?, ? }③{?
y5–1 (00)xy=2x2y=2x21(01)–3 试说出函数yax2k(ak是常数a≠0)的图象的开口方向对称轴和顶点坐标并填写下表. 练习1.把抛物线 向下平移2个单位可以得到抛物线 再向上平移5个单位可以得到抛物线 2.对于函数y= –x21当x 时函
#
违法有害信息,请在下方选择原因提交举报