- 2 - 跨学科结合与高中衔接问题一选择题1 (2014?湖北荆门,第8题3分)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )第1题图 A. B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答
- 1 - 跨学科结合与高中衔接问题一、选择题1.(2014·台湾,第23题3分)若有一等差数列,前九项和为54,且第一项、第四项、七项的和为36,则此等差数列的公差为何?( )A.﹣6B.﹣3C.3D.6分析:由等差数列的性质可知:前九项和为54,得出第五项=54÷9=6;由且第一项、第四项、第七项的和为36,得出第四项=36÷3=12,由此求得公差解决问题.解:∵前九项和为54,∴第五
#
跨学科结合与高中衔接问题1.(2014?广东梅州第13题3分)如图弹性小球从点P(03)出发沿所示方向运动每当小球碰到矩形OABC的边时反弹反弹时反射角等于入射角当小球第1次碰到矩形的边时的点为P1第2次碰到矩形的边时的点为P2…第n次碰到矩形的边时的点为Pn则点P3的坐标是 点P2014的坐标是 .考点:规律型:点的坐标.分析:根据反射角与入射角的定义作出图形可知每6次反弹
跨学科结合与高中衔接问题一、选择题1.(2014·台湾,第23题3分)若有一等差数列,前九项和为54,且第一项、第四项、七项的和为36,则此等差数列的公差为何?( )[来源:]A.﹣6B.﹣3C.3D.6分析:由等差数列的性质可知:前九项和为54,得出第五项=54÷9=6;由且第一项、第四项、第七项的和为36,得出第四项=36÷3=12,由此求得公差解决问题.[来源:学科网]解:∵前九项和为
跨学科结合与高中衔接问题1.(2014?广东梅州,第13题3分)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P3的坐标是 ;点P2014的坐标是 .考点:规律型:点的坐标.分析:根据反射角与入射角的定义
PAGE PAGE 1跨学科结合与高中衔接问题一.选择题1.(2018·四川巴中·3分)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮球沿一条抛物线运动当球运动的水平距离为时达到最大高度然后准确落入篮框内.已知篮圈中心距离地面高度为在如图所示的平面直角坐标系中下列说法正确的是( )A.此抛物线的解析式是y=﹣.篮圈中心的坐标是(
跨学科结合与高中衔接问题一、选择题1.(2014·台湾,第23题3分)若有一等差数列,前九项和为54,且第一项、第四项、七项的和为36,则此等差数列的公差为何?( )A.﹣6B.﹣3C.3D.6分析:由等差数列的性质可知:前九项和为54,得出第五项=54÷9=6;由且第一项、第四项、第七项的和为36,得出第四项=36÷3=12,由此求得公差解决问题.解:∵前九项和为54,∴第五项=54÷9=
跨学科结合与高中衔接问题一、选择题1.(2014·台湾,第23题3分)若有一等差数列,前九项和为54,且第一项、第四项、七项的和为36,则此等差数列的公差为何?( )A.﹣6B.﹣3C.3D.6分析:由等差数列的性质可知:前九项和为54,得出第五项=54÷9=6;由且第一项、第四项、第七项的和为36,得出第四项=36÷3=12,由此求得公差解决问题.解:∵前九项和为54,∴第五项=54÷9=
跨学科结合与高中衔接问题1.(2014?广东梅州第13题3分)如图弹性小球从点P(03)出发沿所示方向运动每当小球碰到矩形OABC的边时反弹反弹时反射角等于入射角当小球第1次碰到矩形的边时的点为P1第2次碰到矩形的边时的点为P2…第n次碰到矩形的边时的点为Pn则点P3的坐标是 点P2014的坐标是 .考点:规律型:点的坐标.分析:根据反射角与入射角的定义作出图形可知每6次反弹为一个
违法有害信息,请在下方选择原因提交举报