圆的有关性质一、选择题1 ( 2014?珠海,第5题3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( ) A.160°B.150°C.140°D.120°考点:圆周角定理;垂径定理.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB
圆的有关性质一、选择题1 ( 2014?珠海,第5题3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( ) A.160°B.150°C.140°D.120°考点:圆周角定理;垂径定理.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB
圆的有关性质一选择题1. (2014?山东潍坊第6题3分)如图平行四边形ABCD的顶点ABD在⊙0上顶点C在⊙O直径BE上连接AE∠E=36°则∠ADC的度数是( ) A44° B.54° C.72° D.53°考点:圆周角定理平行四边形的性质.分析:根据平行四边形的性质得到∠ABC=∠ADC再根据圆周角定理的推论由BE为⊙O的直径得到∠BAE=
圆与圆的位置关系一、选择题1 (2014?扬州,第5题,3分)如图,圆与圆的位置关系没有( )(第1题图) A.相交B.相切C.内含D.外离考点:圆与圆的位置关系分析:由其中两圆有的位置关系是:内切,外切,内含、外离.即可求得答案.解答:解:∵如图,其中两圆有的位置关系是:内切,外切,内含、外离.∴其中两圆没有的位置关系是:相交.故选A.点评:此题考查
实数一、选择题1 ( 2014?安徽省,第1题4分)(﹣2)×3的结果是( ) A.﹣5B.1C.﹣6D.6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算. 2 ( 2014?安徽省,第6题4分)设n为正整数,且n<<n+1,则n的值为( ) A.
概率一、选择题1 ( 2014?广东,第6题3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本
二次函数一、选择题1 ( 2014?广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) A.函数有最小值B.对称轴是直线x= C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方
点直线与圆的位置关系一、选择题1.(2014年天津市,第7题3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于( ) A. 20°B.25°C.40°D.50°考点:切线的性质.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠A
圆的有关性质一.选择题1.(2013兰州123分)如图是一圆柱形输水管的横截面阴影部分为有水部分如果水面AB宽为8cm水面最深地方的高度为2cm则该输水管的半径为( ) A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用勾股定理.分析:过点O作OD⊥AB于点D连接OA由垂径定理可知AD=AB设OA=r则OD=r﹣2在Rt△AOD
全等三角形一、选择题1.(2014年四川资阳,第6题3分)下列命题中,真命题是( ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线互相垂直的平行四边形是矩形 C.对角线垂直的梯形是等腰梯形 D.对角线相等的菱形是正方形考点:命题与定理.分析:利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.解答:解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边
违法有害信息,请在下方选择原因提交举报