第2课时 分段函数及映射第一章 122 函数的表示法1会用解析法及图象法表示分段函数;2给出分段函数,能研究有关性质;3了解映射的概念问题导学题型探究达标检测学习目标知识点一 分段函数思考 设A={三角形},B=R,对应关系f:每个三角形对应它的周长这个对应是不是函数?它与函数有何共同点?答案答案 因为A不是非空数集,故该对应不是函数但满足“A中任一元素,在B中有唯一确定的元素与之对应”知识点二
第2课时 分段函数及映射第一章 函数的表示法1.会用解析法及图象法表示分段函数2.给出分段函数能研究有关性质3.了解映射的概念.问题导学题型探究达标检测学习目标问题导学 新知探究 点点落实知识点一 分段函数思考 设集合ARB[0∞).对于A中任一元素x规定:若x≥0则对应B中的yx若x<0则对应B中的y-x.按函数定义这一对应算不算函数答案答案 算函数.因为从整体来看A中任一
第1课时 函数的表示法第一章 122 函数的表示法1了解函数的三种表示法及各自的优缺点;2掌握求函数解析式的常见方法;3尝试作图和从图象上获取有用的信息问题导学题型探究达标检测学习目标问题导学 知识点三 列表法规律与方法1如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图象,画图时要注意一些关键点,如与
1.21 函数的概念第一章 12函数及其表示1理解函数的概念;2了解构成函数的三要素;3正确使用函数、区间符号.问题导学题型探究达标检测学习目标知识点一 函数的概念知识点二 函数相等知识点三 区间(-∞,+∞) [a,+∞) (a,+∞) (-∞,a] (-∞,a) [a,b)规律与方法1函数的本质:两个非空数集间的一种确定的对应关系由于函数的定义域和对应关系一经确定,值
222 对数函数及其性质(一)第二章 22对数函数1理解对数函数的概念;2掌握对数函数的性质;3了解对数函数在生产实际中的简单应用问题导学题型探究达标检测学习目标知识点一 对数函数的概念知识点二 对数函数的图象与性质类似地,我们可以借助指数函数图象和性质得到对数函数图象和性质:(0,+∞)R(1,0)(-∞,0)[0,+∞)(0,+∞)(-∞,0]x轴规律与方法1在对数函数y=logax(a0,
Click to edit Master title styleClick to edit Master text styles1.2.2 函数的表示法(第2课时 分段函数及映射)函数的表示方法为 .解析法图象法列表法1.分段函数的概念在定义域内___________上有 的 的函数通
第2课时 奇偶性的应用第一章 132 奇偶性1掌握用奇偶性求解析式的方法;2理解奇偶性对单调性的影响并能用以解不等式;3进一步加深对函数的奇偶性概念的理解问题导学题型探究达标检测学习目标一般地,求解析式的任务就是要找到一个含有自变量因变量的等式如果该等式同时满足两个条件:①定义域符合要求;②图象上任意一点均满足该式如果知道函数的奇偶性和一个区间[a,b]上的解析式,那么就可以设出关于原点对称区间
§1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图一基础过关1.下列命题正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点2.如图所示的一个几何体哪一个是该几何体的俯视图( )3.如图所示下列几何体各自的三视图中有且仅有两个视图相同的是( )A.①②
222 对数函数及其性质(二)第二章 22对数函数1掌握对数型复合函数单调区间的求法及单调性的判定方法;2掌握对数型复合函数奇偶性的判定方法;3会解简单的对数不等式;4了解反函数的概念及它们的图象特点问题导学题型探究达标检测学习目标一般地,形如函数f(x)=logag(x)的单调区间的求法:①先求g(x)>0的解集(也就是函数的定义域);②当底数a大于1时, g(x)>0限制之下g(x)的单调增
第2课时 函数的最大(小)值第一章 单调性与最大(小)值1.理解函数的最大(小)值的概念及其几何意义2.会借助单调性求最值3.掌握求二次函数在闭区间上的最值.问题导学题型探究达标检测学习目标问题导学 新知探究 点点落实知识点一 函数的最大(小)值思考 在下图表示的函数中最大的函数值和最小的函数值分别是多少为什么不是最小值答案答案 最大的函数值为4最小的函数值为没有A中的元素与
违法有害信息,请在下方选择原因提交举报