兰州第十中学 数学组2013年最新八年级数学竞赛讲座 第二十一讲 相似三角形的性质 两个相似三角形的对应角相等对应边成比例对应边之比称为它们的相似比可以想到这两个相似三角形中其他一些对应元素也与相似比有一定的关系. 1.相似三角形对应高的比对应中线的比对应角平分线的比都等于相似比 2.相似三角形周长之比等于相似比 3.相似三角形面积之比等于相似比的平方.以上诸多相似三角
兰州第十中学 数学组2013年最新八年级数学竞赛讲座 第十七讲 梯形 一组对边平行而另一组对边不平行的四边形叫梯形等腰梯形是一类特殊的梯形其判定和性质定理与等腰三角形的判定和性质类似. 通过作辅助线把梯形转化为三角形平行四边形这是解梯形问题的基本思路常用的辅助线的作法是: 1.平移腰:过一顶点作一腰的平行线 2.平移对角线:过一顶点作一条对角线的平行线 3.过底
兰州第十中学 数学组2013年最新八年级数学竞赛讲座 第十四讲 多边形的边角与对角线 边角对角线是多边形中最基本的概念求多边形的边数内外角度数对角线条数是解与多边形相关的基本问题常用到三角形内角和多边形内外角和定理不等式方程等知识. 多边形的内角和定理反映出一定的规律性:(n-2)×180°随n的变化而变化而多边形的外角和定理反映出更本质的规律360°是一个常数把内角问题转化为外角
兰州第十中学 数学组2013年最新八年级数学竞赛讲座 第十五讲 平行四边形 平行四边形是一类特殊的四边形它的特殊性体现在边角对角线上矩形菱形是特殊的平行四边形矩形的特殊性体现在有一个角是直角菱形的特殊性体现在邻边相等所以它们既有平行四边形的性质又有各自特殊的性质. 对角线是解决四边形问题的常用线段对角线本身的特征又可以决定四边形的形状大小连对角线后平行四边形就产生特殊三角形因此解平
兰州第十中学 数学组2013年最新八年级数学竞赛讲座 第二十四讲 配方法的解题功能 把代数式通过凑配等手段得到完全平方式再运用完全平方式是非负数这一性质达到增加问题的条件的目的这种解题方法叫配方法. 配方法的作用在于改变代数式的原有结构是求解变形的一种手段配方法的实质在于改变式子的非负性是挖掘隐含条件的有力工具配方法在代数式的化简求值解方程解最值问题讨论不等关系等方面有广泛的应用.
兰州第十中学 数学组2013年最新八年级数学竞赛讲座 第十八讲 由中点想到什么 线段的中点是几何图形中一个特殊的点它关联着三角形中线直角三角形斜边中线中心对称图形三角形中位线梯形中位线等丰富的知识恰当地利用中点处理中点是解与中点有关问题的关键由中点想到什么常见的联想路径是:1.中线倍长2.作直角三角形斜边中线3.构造中位线4.构造中心对称全等三角形等.熟悉以下基本图形基本结论:例题求解
初中数学竞赛培训讲义第十三讲 相似三角形 相似三角形的性质是几何证明的重要工具是证明线段和差问题相等问题比例问题角相等问题的重要方法本讲即探究该问题. 一 竞赛知识回顾 1相似三角形的性质 相似三角形的对应边成比例对应角相等对应边上的中线角平分线高线周长之比等于相似比面积之比等于相似比的平方. 2相似三角形的判定方法 (1)三边对应成比例的
第八讲:相似三角形一知识回顾:1相似三角形的定义三边对应成_________三个角对应________的两个三角形叫做相似三角形.2相似三角形的判定方法⑴. 若DE∥BC(A型和X型)则______________.⑵. 射影定理:若CD为Rt△ABC斜边上的高(双直角图形)则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=________CD2=_______BC2=__ ____.
相似三角形运用 班级___________________【基础练习】:1.如图所示若点C是AB的黄金分割点AB1则AC=___ BC=_____ 2.如图在等腰三角形ABC中∠A=36°BDCE分别是∠ABC∠ACB的角平分线BDCE相交于点O则图中的黄金三角形有_
#
违法有害信息,请在下方选择原因提交举报