大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • .doc

    数列的通项一知识回顾:1用观察法(不完全归纳法)求数列的通项.2运用等差(等比)数列的通项公式.3已知数列前项和则(注意:不能忘记讨论)4已知数列前项之积Tn一般可求Tn-1则an(注意:不能忘记讨论). 5已知且{f(n)}成等差(比)数列则求可用累加法.6已知求用累乘法.7已知数列的递推关系研究an与an-1的关系式的特点可以通过变形构造得出新数列为等差或等比数列.8已知与的关系式利

  • .doc

    #

  • 求法.ppt

    数列通项的求法退出知识要点分析数列通项的求法返回要点分析 数列是高中代数的重要内容之一,也是初等数学与高等数学的衔接点,因而在历年的高考试题中点有较大的比重。在这类问题中,求数列的通项是解题的突破口、关键点。返回数列通项公式的求法观察法逐差求和法逐商求积法利用前n项和构造等差、等比数列返回观察法 观察法就是观察数列特征,横向看各项之间的关系结构,纵向看各项与项数n的内关系例题讲解返回评注例1、 写

  • .ppt

    周后来 2012年10月(观察变与不变)给出数列的递推公式求通项公式:? 类型4:通过配凑构造的新数列求通项. 7. 在数列{an}中a1=1 an1= 2an2n.(1) 设 证明:数列{bn}是等差数列(2) 求数列{an}的通项公式an .(2) 可构造的新数列 设Sn - Sn-110. 数列{an}的前n项和为Sn 且a1=1 an1=2Sn n?N.

  • .doc

    求通项公式的常用方法一定义法:直接利用等差数列或等比数列的定义求通项的方法叫定义法这种方法适应于已知数列类型的题目.例1.等差数列是递增数列前n项和为且成等比数列.求数列的通项公式.二 公式法:递推公式为与的关系式(或)解法:利用与消去 或与消去进行求解例题:已知无穷数列的前项和为并且求的通项公式跟踪训练1已知数列的前项和满足关系.试证数列是等比数列.三 待定系数法:(换元法) eq oa

  • .docx

    【1】 则________________ 【解析】【2】 则________________【解析】【3】 则________________【解析】【4】 则________________【解析】【5】 则________________【解析】【6】则________________【解析】【7】则________________【解析】【8】则________________【解析】【9

  • 公式.doc

    #

  • 公式.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级数列的概念与简单表示(1)课件设计:陈江林正方形数:14916···三角形数:13610···18446744073709551615按照一定的次序排列的一列数叫做数列 数列的定义: 数列中的每一个数都叫做数列的项.各项依次叫做数列的第1项(或首项)第2项… 第n项 … .数列的项序号n 1 2 3

  • 求法.ppt

    单击此处编辑母版文本样式第二级第三级第四级第五级数列通项的求法要点分析 数列是高中代数的重要内容之一也是初等数学与高等数学的衔接点因而在历年的高考试题中点有较大的比重在这类问题中求数列的通项是解题的突破口关键点数列通项公式的求法观察法公式法定义法递推公式逐差求和法(累加法)逐商求积法(累积法)定义法:观察分析法 :策略(先符号统一结构纵横观察)一已知数列求通项二已知数列前n项和求

  • 求法.ppt

    数列通项的求法 退出知识要点分析数列通项的求法返回要点分析 数列是高中代数的重要内容之一也是初等数学与高等数学的衔接点因而在历年的高考试题中点有较大的比重在这类问题中求数列的通项是解题的突破口关键点返回数列通项公式的求法观察法逐差求和法逐商求积法利用前n项和构造等差等比数列返回观察法 观察法就是观察数列特征横向看各项之间的关系结构纵向看各项与项数n的内关系

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部