单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第九章 常微分方程数值解 Numerical Methods for Ordinary Differential Equations ? 考虑一阶常微分方程的初值问题 Initial-Value Problem :只要 f (x y) 在[a b] ? R1 上连续且关于 y 满足 Lipschitz 条件即存在与 x
摘要:随着计算机技术的发展求解麦克斯韦方程的数值解方法也越来越多自1966年Yee首次提出时域有限差分(FDTD)方法后这一方法得到迅速发展及广泛应用本文简要回顾了FDTD的发展历史及其基本要点与应用并以一维麦克斯韦方程为例进行求解在此过程中本文先对麦克斯韦方程进行差分归一化处理并对由此得出的迭代方程建立空间模型最后用matlab进行仿真得到其相关波形图与系数并与理论计算值进行比较仿真结
16微分方程与计算机模拟 常微分方程数值解方法捕食者与被捕食者问题有阻力抛射曲线问题卫星轨道模拟问题????数值方法求常微分方程初值问题 求解步骤:(1)用函数文件定义一阶微分方程(或方程组)右端函数(2)用MATLAB命令ode23()求数值解或绘积分曲线使用格式:[TY] = ode23(FTspany0)其中Tspan = [t0tN]是常微分方程求解区域y0是初始值F 是包括函数文件名字的
16微分方程与计算机模拟 常微分方程数值解方法捕食者与被捕食者问题有阻力抛射曲线问题卫星轨道模拟问题????数值方法求常微分方程初值问题 求解步骤:(1)用函数文件定义一阶微分方程(或方程组)右端函数(2)用MATLAB命令ode23()求数值解或绘积分曲线使用格式:[TY] = ode23(FTspany0)其中Tspan = [t0tN]是常微分方程求解区域y0是初始值F 是包括函数文件名字的