相似三角形模型知识框架相似模型(一)金字塔模型(二) 沙漏模型 (1);(2).所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:(1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;(2)相似三角形的面积比等于它们相似比的平方;(3)连接三角形两边中点的线段叫做三角形的中位线.三角形中位
相似三角形模型知识框架相似模型(一)金字塔模型(二) 沙漏模型 (1);(2).所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:(1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;(2)相似三角形的面积比等于它们相似比的平方;(3)连接三角形两边中点的线段叫做三角形的中位线.三角形中位
相似三角形模型知识框架相似模型(一)金字塔模型(二) 沙漏模型 (1);(2).所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:(1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;(2)相似三角形的面积比等于它们相似比的平方;(3)连接三角形两边中点的线段叫做三角形的中位线.三角形中位
等高三角形模型知识框架三角形等高模型我们已经知道三角形面积的计算公式:三角形面积底高从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.
等高三角形模型知识框架三角形等高模型我们已经知道三角形面积的计算公式:三角形面积底高从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.
燕尾模型知识框架共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。 共边定理:设直线AB与PQ交于点M,则 特殊情况:当PQ∥AB时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB ??例题精讲【例 1】如图,三角形中,,,求.【巩固】如图,三角形中,,,求【例 2】如图,三角形的面积是,是的中点,点在上,且,与交于点.则四边形的面积等于 . 【巩固】如图,已知,,三角形的面积
蝴蝶模型知识框架四边形模型任意四边形中的比例关系(“蝴蝶定理”):①或者②蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):①②;③的对应份数为.例题精讲一、任意四边形【例 1】图中的四边形土地的总面积是52公顷,两条对角线把它分
燕尾模型知识框架共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。 共边定理:设直线AB与PQ交于点M,则 特殊情况:当PQ∥AB时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB ??例题精讲【例 1】如图,三角形中,,,求.【巩固】如图,三角形中,,,求【例 2】如图,三角形的面积是,是的中点,点在上,且,与交于点.则四边形的面积等于 . 【巩固】如图,已知,,三角形的面积
蝴蝶模型知识框架四边形模型任意四边形中的比例关系(“蝴蝶定理”):①或者②蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):①②;③的对应份数为.例题精讲一、任意四边形【例 1】图中的四边形土地的总面积是52公顷,两条对角线把它分
五大模型(一)知识框架一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图;反之,如果,则可知直线平行于.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比
违法有害信息,请在下方选择原因提交举报