大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 1_.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级定积分第六章1一曲边梯形的面积第一节 定积分的概念与性质 由连续曲线 y = f (x) ( f (x) ? 0) 直线 x=a x=b (a<b)及x轴所围成的平面图形的面积yo2abxyoabxyo用矩形面积近似取代曲边梯形面积显然小矩形越多矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)3观察下列演

  • 1_.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级定积分第六章1一曲边梯形的面积第一节 定积分的概念与性质 由连续曲线 y = f (x) ( f (x) ? 0) 直线 x=a x=b (a<b)及x轴所围成的平面图形的面积yo2abxyoabxyo用矩形面积近似取代曲边梯形面积显然小矩形越多矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)3观察下列演

  • 12_.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级定积分第六章1一曲边梯形的面积第一节第二节 定积分的概念与性质 由连续曲线 y = f (x) ( f (x) ? 0) 直线 x=a x=b (a<b)及x轴所围成的平面图形的面积yo2abxyoabxyo用矩形面积近似取代曲边梯形面积显然小矩形越多矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)3观察

  • _.ppt

    一、引进定积分概念的两个例子第五章 定 积 分第一节 定积分的概念与性质二、定积分的定义三、定积分的几何意义四、定积分的性质一、引进定积分概念的两个例子1曲边梯形的面积曲边梯形:在直角坐标系下,   由闭区间[a, b]上的连续曲线 y = f (x) ≥ 0,        直线 x = a,x = b 与 x 轴围成的平面图形 AabB基于这种想法,可以用一组平行于 y 轴的直线把曲边梯形分割

  • 1-.ppt

    第一节 定积分的 概念与性质1、实例1(求曲边梯形的面积)11定积分问题举例用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.播放(1)分割(2)近似(3)求和 曲边梯形面积为以上四个步骤可以概括为一句话: “分割取近似,求和取极限”2、实例2(求变速直线运动的路程)思路:把

  • .ppt

    四不定积分的几何意义 则函数族 F(x) C (C 为任意常数)都是 f (x) 在该区间上的原函数.F ?(x) = f (x)即  解 根据不定积分的定义只要求出被积函数一个原函数之后再加上一个积分常数 C 即可.例 2 求不定积分基本积分表(2)即(k 为不等于零的常数)解  积分曲线族 y = F (x) C 的特点是:       从而使相应点的切线

  • _不.ppt

    一、原函数与不定积分第四章 不定积分第一节 不定积分的概念与性质二、不定积分的基本性质三、不定积分的性质四、不定积分的几何意义定义 1 设函数 y = f (x) 在某区间上有定义,如果存在函数 F (x),对于该区间上任一点 x,使F ?(x)= f (x) 或 dF(x) = f (x)dx ,则称函数 F (x) 是已知函数 f (x) 在该区间上的一个原函数一、原函数与不定积分( x3 +

  • .ppt

    第四条边是一条曲线弧叫做曲边.b因此我们用极限求曲边梯形面积.1n具体步骤如下:在区间在很短的一段时间内 内任意插入积分变量而与积分变量用什么字母表示无关.性质5由性质5得]]积分中值公式有如下几何意义:在闭区间小结

  • 5-1(1).ppt

    第五章定积分第一节 定积分的概念与性质 有三条是直线段,其中两条相互平行且垂直另外一条(底),第四条边是一条曲线弧段且与相互平行的两直线只有一个交点。ab实例1(求曲边梯形的面积)曲边梯形:用函数表示:s1s2s3A1A2sn两个特殊图形的面积方法:分割、近似计算、累加用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)曲边梯形如图所示,曲边梯

  • .ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第一节 定积分的概念和性质一定积分问题举例二定积分的定义三定积分的几何意义四定积分的性质五小结abxyo例1 (求曲边梯形的面积)一定积分问题举例abxyoabxyo用矩形面积近似取代曲边梯形面积显然小矩形越多矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)曲边梯形如图所示曲边梯形面积的近似值为曲边梯形面积为例2

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部