154二次根式的混合运算二个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个含有二次根式的代数式互为有理化因式例如:的有理化因式是的有理化因式是的有理化因式是指出下列各式的有理化因式一 分母有理化常规基本法 练习 二分解约简法化简练习解 复习 怎样计算下式?观察所得的积是否含有二次根式?两个含有二次根式的非零代数式相乘,如果它们的积不含有二次根式,就说这两个含有二次根式的非零代
二次根式混合运算习题1、下列各式中不是二次根式的是( )(A)(B)(C) (D)2、下列运算正确的是 ()(A )(B)(C)2+=2 (D) 3、下列二次根式中与是同类二次根式的是( )(A)(B)(C) (D) 4、化简的结果为( )(A) –1 (B)(C)(D) 5、化简的结果是( )(A) –2 (B) 2(C) ±2 (D) 46、使代数式8有意义的的范围是( )(A)(B)
#
#
二次根式的混合运算年级__________ 班级_________ _________ __________ 分数____总分一二三得分阅卷人一选择题(共10题题分合计40分)-2的有理化因式是 -2 - 22.下列各式中错误的个数是①x2(-2)2=(x2)(x-2) ② ③( ④(2-
二次根式的混合运算1.二次根式的乘除法法则是: 两个二次根式相除等于把被开方数相除作为商的被开方数商的算术平方根等于被除式的算术平方根除以除式的算术平方根 最简二次根式 分母有理化——
#
初中数学二次根式混合运算 一计算题1. 2. 3. 4. v5.化简. 6.把化为最简二次根式. 7.的倒数是 8.计算÷的结果是 9.当x
二次根式的混合运算 二个含有二次根式的代数式相乘如果它们的积不含有二次根式我们就说这两个含有二次根式的代数式互为有理化因式.例如:的有理化因式是的有理化因式是的有理化因式是指出下列各式的有理化因式一. 分母有理化常规基本法 练习 二.分解约简法化简练习解 例题3 如图在面积为 的正方形 中截得直角三角形 的面积为 求 的长.因为正方形面积为
二次根式的混合运算 ●激情导入这节课我们就来学习二次根式的混合运算.●理清学习目标 1含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 2复习整式运算知识并将该知识运用于含有二次根式的式子的乘除乘方等运算.●自主预习练习活动一:阅读教材第16页例4相互交流思考下列问题 : ●聚焦主题合作探究探究点一 运算律在二次根式混合运算中的应用 (1)第(1)小题第一步的依据是什么第二步
违法有害信息,请在下方选择原因提交举报