二次根式板块一:知识框架梳理板块二:重难点复习回顾重难点一:二次根式有意义的条件当x是多少时在实数范围内有意义当x是多少时在实数范围内有意义重难点二:二次根式基本性质探究与a之间的关系重难点三:最简二次根式把下列各式化成最简二次根式: (1) (2) (3) (4) 下列各式中是最简二次根式的是( ).A.B.C.D.重难点四:分
二次根式一判断题:(每小题1分共5分).1.2.……………………………………………………………………………………( ) 2.是二次根式.………………………………………………………………………( )3.13-121.…………………………………………… ( )4.是同类二次根式.……………………………………………………( )5.的有理化因式为.…………………………………………………
《二次根式》提高测试(一)判断题:(每小题1分共5分)1.-2.…………………( ) 【提示】-22.【答案】×.2.-2的倒数是2.( ) 【提示】-(2).【答案】×.3..…( ) 【提示】x-1x-1(x≥1).两式相等必须x≥1.但等式左边x可取任何数.【答案】×.4.是同类二次根式.…( )【提示】化成最简二次根式后再判断.【答案】.5.都不是最简
九年级(上)数学期中复习试卷——二次根式一二次根式的定义:1 不是二次根式原因是 不是二次根式原因是 2是二次根式吗 (填是或不是)3下列各式是二次根式的是 .① ② ③ ④ ⑤ ⑥ 4能使式子- 有意义的实数x有 个5如果代数式 有意义那么直角坐标系中点P(mn)的位置在 6是整数则正整数n的最小值是( )A4
- 4 - 第21章 二次根式 期中复习试卷________ 得分_________认真选一选:(每小题3分,共24分)x为何值时,在实数范围内有意义( )A、B、C、 D、2 下列计算正确的是()A、B、C、 D、3 下列二次根式中,是最简二次根式的是( )A、B、 C、 D、4 下列各式中,计算正确的是( )A、B、 C、D、5 已知直角三角形的一条直角边为9,斜边为10,则另一条直
- 4 - 第21章 二次根式 期中复习试卷班级____________________总分 (命题人:易延高)一、选择题:(每小题3分,共36分)1若 有意义,则x满足条件( ) Ax>2 Bx≥2 Cx<2Dx≤22若=-a,则实数a在数轴上的对应点一定在( )A原点左侧。B原点右侧。 C原点或原点左侧。 D原点或原点右侧。3.的平方根是()A -9 B9 C±9D±34下列各式中,
二次根式复习 一.学习目标:1.能够比较熟练应用二次根式的性质进行化简2.能够比较熟练进行二次根式的运算3.会运用二次根式的性质及运算解决简单的实际问题.二.学习重点:二次根式的性质应用及运算.学习导航:一知识点梳理1. 一般地式子 叫做二次根式.特别地被开方数不小于 .2. 二次根式的性质:⑴ eq
《二次根式》复习基础知识梳理:1.二次根式的定义:一般地式子 EQ r(a) (≥0)叫做二次根式a叫做被开方数(1)判断下列各式哪些是二次根式哪些不是为什么(2) x取何值时下列各二次根式有意义① ② ③ (3)若有意义则a的值为___________.(4)若在实数范围内有意义则x为( )A.正数 B.负数 C.非负数 D.非正
二次根式复习二次根式有意义的条件:例1:求下列各式有意义的所有x的取值范围小练习:(1)当x是多少时在实数范围内有意义(2)当x是多少时 在实数范围内有意义② (3)当x是多少时x2在实数范围内有意义(4)当时有意义2. 使式子有意义的未知数x有( )个. A.0 B.1 C.2 D.无数3.已知y=5求的值.4.若有意义则=_______.5. 若有意义
龙文教育1对1个性化教案 学 生文舒艳 学 校四十七中学 年 级 八年级教 师徐俊平授课日期2012-05-10授课时段19:00-21:00课 题 二次根式重 点难 点1二次根式的概念和基本性质2二次根式的基本性质的灵活运用教学步骤及教学内容教学目标:1了解二次根式的概念2了解二次根式的基本性质经历观察比较总结二次
违法有害信息,请在下方选择原因提交举报