卷积定理举例For exampleAns:Using symmetry,
卷积定理举例For exampleAns:Using symmetry,
卷积定理举例For exampleAns:Using symmetry,
用定义计算卷积举例例:f (t) = e t,(-∞t∞),h(t) = (6e-2t – 1)ε(t),求yzs(t)。解: yzs(t) = f (t) * h(t)当t τ,即τ t时,ε(t -τ) = 0
用定义计算卷积举例例:f (t) = e t,(-∞t∞),h(t) = (6e-2t – 1)ε(t),求yzs(t)。解: yzs(t) = f (t) * h(t)当t τ,即τ t时,ε(t -τ) = 0
图解法计算卷积举例例f (t) ,h(t) 如图所示,求yzs(t)= h(t) * f (t) 。[解] 采用图形卷积 。 f ( t -τ)f (τ)反折f (-τ)平移t① t0时 , f ( t -τ)向左移f ( t -τ) h(τ) = 0,故yzs(t) = 0② 0≤t ≤1 时, f ( t -τ)向右移③ 1≤t ≤2时⑤ 3≤t 时f ( t -τ) h(τ) = 0,故yzs(t) = 0④ 2≤t ≤3 时0
图解法计算卷积举例例f (t) ,h(t) 如图所示,求yzs(t)= h(t) * f (t) 。[解] 采用图形卷积。 f ( t -τ)f (τ)反折f (-τ)平移t① t0时 , f ( t -τ)向左移f ( t -τ) h(τ) = 0,故yzs(t) = 0② 0≤t ≤1 时, f ( t -τ)向右移③ 1≤t ≤2时⑤ 3≤t 时f ( t -τ) h(τ) = 0,故yzs(t) = 0④ 2≤t ≤3 时0
3.常见求定积分的公式C.1 或-10利用定积分求平面图形的面积应严格按照作图求交点确定被积函数和计算定积分的步骤进行.
单击此处编辑母版标题样式X第 页§3.8卷积特性(卷积定理)卷积定理卷积定理的应用一.卷积定理时域卷积定理时域卷积对应频域频谱密度函数乘积频域卷积定理卷积定理揭示了时间域与频率域的运算关系在通信系统和信号处理研究领域中得到大量应用?求系统的响应?将时域求响应转化为频域求响应二.应用?用时域卷积定理求频谱密度函数
频域卷积定理
违法有害信息,请在下方选择原因提交举报