概念性质定理公式必须清楚解法必须熟练计算必须准确 eq oac(○注):全体维实向量构成的集合叫做维向量空间. eq oac(○注) 关于: = 1 GB3 ①称为的标准基中的自然基单位坐标向量 = 2 GB3 ②线性无关 = 3 GB3 ③④⑤任意一个维向量都可以用线性表示.行列式的定义 行列式的计算: = 1 GB3 ①行列式按行(
概念性质定理公式必须清楚解法必须熟练计算必须准确 eq oac(○注):全体维实向量构成的集合叫做维向量空间. eq oac(○注) 关于: = 1 GB3 ①称为的标准基中的自然基单位坐标向量 = 2 GB3 ②线性无关 = 3 GB3 ③④⑤任意一个维向量都可以用线性表示.行列式的定义 行列式的计算: = 1 GB3 ①行列式按行(列)展开定理:行列
1行列式行列式共有个元素展开后有项可分解为行列式代数余子式的性质:①和的大小无关②某行(列)的元素乘以其它行(列)元素的代数余子式为0③某行(列)的元素乘以该行(列)元素的代数余子式为代数余子式和余子式的关系:设行列式:将上下翻转或左右翻转所得行列式为则将顺时针或逆时针旋转所得行列式为则将主对角线翻转后(转置)所得行列式为则将主副角线翻转后所得行列式为则行列式的重要公式:①主对角行列式:主对
1行列式行列式共有个元素展开后有项可分解为行列式代数余子式的性质:①和的大小无关②某行(列)的元素乘以其它行(列)元素的代数余子式为0③某行(列)的元素乘以该行(列)元素的代数余子式为代数余子式和余子式的关系:设行列式:将上下翻转或左右翻转所得行列式为则将顺时针或逆时针旋转所得行列式为则将主对角线翻转后(转置)所得行列式为则将主副角线翻转后所得行列式为则行列式的重要公式:①主对角行列式:主对
10 / NUMS10 2012年6月14日星期四 第一章行列式1.逆序数11 定义个互不相等的正整数任意一种排列为:,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用表示,等于它所有数字中后面小于前面数字的个数之和。12 性质一个排列中任意两个元素对换,排列改变奇偶性,即 。证明如下:设排列为,作次相邻对换后,变成,再作次相邻对换后,
1行列式行列式共有个元素展开后有项可分解为行列式代数余子式的性质:①和的大小无关②某行(列)的元素乘以其它行(列)元素的代数余子式为0③某行(列)的元素乘以该行(列)元素的代数余子式为代数余子式和余子式的关系:设行列式:将上下翻转或左右翻转所得行列式为则将顺时针或逆时针旋转所得行列式为则将主对角线翻转后(转置)所得行列式为则将主副角线翻转后所得行列式为则行列式的重要公式:①主对角行列式:主对
2016考研数学:线性代数公式总结 众所周知数学在考研中的地位是非常重要的每年有不少考生因为数学而与理想学校失之交臂同时在考研数学中高等数学是重中之重无论是数学一数学二还是数学三高等数学部分都是56所以毫不夸张的说:高等数学复习的成败也就基本决定了考研数学的成败在这里凯程考研数学老师将对高等数学的复习提供一些建议希望大家能有所收获事半功倍2016考研数学之高等数学全年规划 > 1.基础阶段
线性代数总结第一章 行列式1二阶行列式和三阶行列式计算方法①二阶行列式 主对角线两数乘机减去次对角线两数乘机②三阶行列式 a11a22a33a12a23a31a13a21a32-a13a22a31-a12a21-a33-a11a23a32 (主对角线为 次对角线为-)注意:对角线法则只适用于二三阶行列式2n阶行列式的计算①主对角行列式:主对角元素的乘积②副对角行列式:副对角元
1行列式行列式共有个元素展开后有项可分解为行列式代数余子式的性质:①和的大小无关②某行(列)的元素乘以其它行(列)元素的代数余子式为0③某行(列)的元素乘以该行(列)元素的代数余子式为代数余子式和余子式的关系:设行列式:将上下翻转或左右翻转所得行列式为则将顺时针或逆时针旋转所得行列式为则将主对角线翻转后(转置)所得行列式为则将主副角线翻转后所得行列式为则行列式的重要公式:①主对角行列式:主对
Evaluation Only. Created with Aspose.Words. Copyright 2003-2022 Aspose Pty Ltd.1行列式行列式共有个元素展开后有项可分解为行列式代数余子式的性质:①和的大小无关②某行(列)的元素乘以其它行(列)元素的代数余子式为0③某行(列)的元素乘以该行(列)元素的代数余子式为代数余子式和余子式的关系:设行列式:将上下翻转或左右翻转所
违法有害信息,请在下方选择原因提交举报