PAGE PAGE 4专题3.3 导数与函数的极值最值1.(浙江省临海市白云高级中学2018-2019学年期中)下列函数中既是奇函数又存在极值的是( )A.B.C.D.【答案】D【解析】由函数的图像得函数是奇函数但是不存在极值故A错误 由函数的图像得函数是偶函数故B错误所以该函数不是奇函数故C错误所以该函数是奇函数由函数图像得函数在上是增函数在上是减函数所以函数存在极值故D正确
PAGE PAGE 4专题3.3 导数与函数的极值最值1.(浙江省临海市白云高级中学2018-2019学年期中)下列函数中既是奇函数又存在极值的是( )A.B.C.D.2.(北京市丰台区2018-2019学年期末)已知函数的定义域为导函数在上的图象如图所示则在内的极小值点的个数为( ) A.1B.2C.3D.43.(江西省九江市2018-2019学年期末)函数有( )
PAGE PAGE 4专题3.3 导数与函数的极值最值1.了解函数在某点取得极值的必要条件和充分条件2.会用导数求函数的极大值极小值3.会求闭区间上函数的最大值最小值知识点1.函数的单调性与导数的关系函数yf(x)在某个区间内可导则:(1)若f′(x)>0则f(x)在这个区间内单调递增(2)若f′(x)<0则f(x)在这个区间内单调递减(3)若f′(x)0则f(x)在这个区间内是
PAGE PAGE 4专题3.3 导数与函数的极值最值1.了解函数在某点取得极值的必要条件和充分条件2.会用导数求函数的极大值极小值3.会求闭区间上函数的最大值最小值知识点1.函数的单调性与导数的关系函数yf(x)在某个区间内可导则:(1)若f′(x)>0则f(x)在这个区间内单调递增(2)若f′(x)<0则f(x)在这个区间内单调递减(3)若f′(x)0则f(x)在这个区间内是
PAGE PAGE 4专题2.2 函数的单调性与最值1.(2019·江苏南通一中期中)下列函数中在区间(0∞)内单调递减的是( )A.yeq f(1x)-x B.yx2-xC.yln x-xD.yex-x【答案】A【解析】对于Ay1eq f(1x)在(0∞)内是减函数y2x在(0∞)内是增函数则yeq f(1x)-x在(0∞)内是减函数BC选项中的函数在(
PAGE PAGE 4专题3.2 导数与函数的单调性1.(黑龙江省哈尔滨市第六中学2018-2019学年期中)已知函数则函数的单调递减区间是( )A. B. C. D.【答案】D【解析】函数的定义域为当时函数单调递减即而解不等式得:故本题选D2.(北京市海定区101中学2018-2019学年期中)已知函数若则( )A.B.
PAGE PAGE 3专题2.2 函数的单调性与最值1.(2019·江苏南通一中期中)下列函数中在区间(0∞)内单调递减的是( )A.yeq f(1x)-x B.yx2-xC.yln x-xD.yex-x2.(2019·安徽黄山一中月考)函数f(x)ln(x2-2x-8)的单调递增区间是( )A.(-∞-2)B.(-∞1)C.(1∞)D.(4∞)3.(2019·山东
PAGE PAGE 4专题2.2 函数的单调性与最值1.理解函数的单调性最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.知识点一 函数的单调性(1)单调函数的定义增函数减函数定义一般地设函数f(x)的定义域为I如果对于定义域I内某个区间D上的任意两个自变量的值x1x2当x1<x2时都有f(x1)<f(x2)那么就说函数f(x)在区间D上是增函数当x1<x2
PAGE PAGE 4专题13.3 绝对值不等式1. (湖南省湘潭一中2019届质检)(1)求不等式x-1x2≥5的解集(2)若关于x的不等式ax-2<3的解集为{x-eq f(53)<x<eq f(13)}求a的值.【解析】(1)当x<-2时不等式等价于-(x-1)-(x2)≥5解得x≤-3当-2≤x<1时不等式等价于-(x-1)(x2)≥5即3≥5无解当x≥1时不
PAGE PAGE 4专题2.7 对数与对数函数1.(2019·湖南湘潭一中月考)已知函数f(x)eq blc{(avs4alco1(2xx≥4f(x1)x<4))则f(2log23)的值为( )A.24 B.16C.12 D.8【答案】A【解析】因为3<2log23<4所以f(2log23)f(3log23)23log238×2log2324.2. (2019·山西
违法有害信息,请在下方选择原因提交举报