114函数展成幂级数两类问题:在收敛域内本节内容:一、泰勒 ( Taylor ) 级数 二、函数展开成幂级数的方法 12所以有了函数展开成的幂级数, 将函数展开为幂级数的形式, 如, 对函数作数值分析时,哪些函数在怎样的区间上可展开为幂级数这是本节要讨论的主要问题用中都是十分重要的在理论上和应总离不开多项式逼近给定的函数, 而幂级数的部分和恰是多项式多项式逼近、那末函数的函数值的近似计算, 以及一
#
#
展 开其中的某邻域内的某邻域内具有任意阶导数 f (x) 的泰勒公式中的余项满足:唯一的 且与它的麦克劳林级数相同.第一步 求函数及其各阶导数在 x = 0 处的值 0. 其收敛半径为 展开成 x 的幂级数.机动 目录 上页 下页 返回 结束 因此对任意常数 m 称为二项展开式 .机动 目录 上页 下页 返回 结束 得区间为解: 提示: 后者必需证明2. 将
#
求 和其中为f (x) 的泰勒级数 . 定理1 .二函数展开成幂级数 — 利用泰勒公式其收敛半径为 得级数:为任意常数 . 则例4. 将函数解: 例6. 将2. 如何求将下列函数展开成 x 的幂级数
#
目录 上页 下页 返回 结束 函数展开成幂级数 的某邻域内具有 n 1 阶导数 待解决的问题 :证明:则是否为所以展开式对 x 1 也是成立的例6. 将内容小结当 m = –1 时在x = 0处展为幂级数.
第四节函数展开成幂级数第十一章 一、泰勒 ( Taylor ) 级数其中( ? 在 x 与 x0 之间)称为拉格朗日余项 则在若函数的某邻域内具有 n + 1 阶导数, 此式称为 f (x) 的 n 阶泰勒公式 ,该邻域内有 :为f (x) 的泰勒级数则称当x0 = 0 时, 泰勒级数又称为麦克劳林级数 1) 对此级数, 它的收敛域是什么 ?2) 在收敛域上 , 和函数是否为 f (x) 待解决的
上节例题例1例3即例如1.如何求函数的泰勒级数
违法有害信息,请在下方选择原因提交举报