勾股定理证明简述直角三角形中两直角边a、b的平方和,等于斜边c的平方 a2+b2=c2abc方法一:△ABD≌△FBC,矩形BL=2△ABD,方形GB=2△FBC。于是 矩形BL=正方形GB。同样有 矩形CL=正方形AK。所以 正方形GB+正方形AK=正方形BE方法二如图一:两个正方形边长分别是a ,b, 它们的面积和为a2+b2如图二: 在图一的基础上,构造了以a ,b为直角边的直角三
勾股定理证明简述直角三角形中两直角边a、b的平方和,等于斜边c的平方 a2+b2=c2abc方法一:△ABD≌△FBC,矩形BL=2△ABD,方形GB=2△FBC。于是 矩形BL=正方形GB。同样有 矩形CL=正方形AK。所以 正方形GB+正方形AK=正方形BE方法二如图一:两个正方形边长分别是a ,b, 它们的面积和为a2+b2如图二: 在图一的基础上,构造了以a ,b为直角边的直角三
勾股定理的证明两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.因此不断出现关于勾股定理的新证法.1.传说中毕达哥拉斯的证法2.赵爽弦图的证法4.美国第20任总统茄菲尔德的证法3.刘徽的证法勾股定理的证明5.其他证法这棵树漂亮吗?如果在树上挂上几串彩色灯泡,再挂上些小铃铛、小彩球、小礼盒、小的圣诞老人,是
勾股定理的证明【证法1】(课本的证明)???????????做8个全等的直角三角形设它们的两条直角边长分别为ab斜边长为c再做三个边长分别为abc的正方形把它们像上图那样拼成两个正方形.从图上可以看到这两个正方形的边长都是a b所以面积相等. 即 整理得 .?【证法2】(邹元治证明)以ab 为直角边以c为斜边做四个全等的直角三角形则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级勾股定理的证明(1) baca2b2=c2曲靖石林育才学校教师: 杨 宾勾股定理(gou-gutheorem)直角三角形两直角边的平方和等于斜边的平方如果直角三角形两直角边分别为ab斜边为c那么abc一学习目标1了解割补的方法证明勾股定理.2会用勾股定理解决一些实际问题.(已知RT△的两边求第三边)▲3领会割补
∵如图有ab=c(平行四边形定则:两个邻边之间的HYPERLINK 对角线代表两个邻边大小HYPERLINK ∴c·c=(ab)·(ab)∴c2=a·a2a·bb·b∴c2=a2b22abCos(π-θ)(以上粗体字符表示向量)又∵cos(π-θ)=-Cosθ∴c2=a2b2-2abcosθ
勾股定理的证明【证法1】(课本的证明)???????????做8个全等的直角三角形设它们的两条直角边长分别为ab斜边长为c再做三个边长分别为abc的正方形把它们像上图那样拼成两个正方形.从图上可以看到这两个正方形的边长都是a b所以面积相等. 即 整理得 .?【证法2】(邹元治证明)以ab 为直角边以c为斜边做四个全等的直角三角形则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级探索勾股定理八年级数学(上册)? 新世纪版临汾铁路中学 王建明ABCABC(图中每个小方格代表一个单位面积)图1-1图1-2(1)观察图1-1 正方形A中含有 个小方格即A的面积是 个单位面积 正方形B的面积是 个单位面积正方形C的面积是 个单位面
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级圆与勾股定理的证明用切线长定理证明在RtΔABC中设直角边BC = aAC = b斜边AB = c. 如图以B为圆心a为半径作圆交AB及AB的延长线分别于DE求证:a2b2=c2证明:则BD = BE = BC = a. 因为∠BCA =90o点C在⊙B上所以AC是⊙B 的切线. 由切割线定理得:作直角三角形的内切圆证明 在R
探索勾股定理 填表(每个小正方形的面积为单位1):13B??正方形内部的格点数b=13cababa①五在印度在阿拉伯世界和欧洲出现的一种拼图证明EaA′勾股定理与第一次数学危机4000蚂蚁沿图中的折线从A点爬到D点一共爬了多少厘米(小方格的边长为1厘米)bDx2 52 = (x1)2A螺形图12128m1.如图两个正方形的面积分别为6449则AC=( )D
违法有害信息,请在下方选择原因提交举报