3.利用正弦定理证明简单三角形2.正弦定理在解三角形式的应用思路.aC j 与 的夹角为 . 正弦定理 在一个三角形中各边和它所对角的正弦的比相等即例题讲解解:(1)通过本节学习我们研究了正弦定理的证明方法同时了解了向量工具的作用.感谢和同行们的观赏
正弦定理余弦定理a 已知两角和任意一边可以求出其他两边和一角已知两边和其中一边的对角可以求出三角形的其他的边和角解:(2)若ABC是⊿ABC的三个内角则sinAsinB____代入左边得:
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级正弦定理余弦定理(3)用正弦定理解三角形需要已知哪些条件 已知三角形的两角和一边或者是已知两边和其中一边的对角 那么如果在一个三角形(非直角三角形)中已知两边及这两边的夹角(非直角)能否用正弦定理解这个三角形为什么正弦定理:在一个三角形中各边和它所对角的正弦的比相等
59正弦定理、余弦定理59正弦定理、余弦定理59正弦定理、余弦定理59正弦定理、余弦定理59正弦定理、余弦定理59正弦定理、余弦定理59正弦定理、余弦定理59正弦定理、余弦定理两等式间有联系吗?即正弦定理,定理对任意三角形均成立.利用向量如何在三角形的边长与三角函数建立联系?59正弦定理、余弦定理如何构造向量及等式?怎样建立三角形中边和角间的关系?59正弦定理、余弦定理 在钝角三角形中,怎样将三角
41正弦定理和余弦定理知识回顾1正弦定理2余弦定理3三角形中的射影定理4三内角与三角函数值的关系基础自测1、D2、B3、A4、A题型一、正弦定理、余弦定理的应用题型二、解三角形题型三、三角形中的三角函数的问题方法规律1.正弦定理、余弦定理和三角形的面积公式三个命题互为等价命题.2.在解三角形时,其三边可视为确定三角形的基本量,可将有关角的条件转化为边,通过解方程组进行求解;也可考虑将有关边的条件化
正余弦定理第2课时 余弦定理(一)(一)教学目标 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法并会运用余弦定理解决两类基本的解三角形问题 2.过程与方法:利用向量的数量积推出余弦定理及其推论并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题 3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力通过三角函数余弦定理向量的数量积等知识间
正弦定理余弦定理(2)考纲要求:1.掌握正弦定理余弦定理2.使学生能初步运用它们解斜三角形并会解决斜三角形的计算问题教学重点:正弦定理余弦定理的运用教学难点:正弦定理余弦定理的灵活运用授课类型:新授课课时安排:1课时教学过程:一复习引入:1正弦定理:在任一个三角形中各边和它所对角的正弦比相等即 == =2R(R为△ABC外接圆半径)2正弦定理的应用 从理论上正弦定理可解决两类问题: 1.两角和任
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1.1 正弦定理和余弦定理 1.1.1 正弦定理 第一章 解三角形高中新课程数学必修⑤第一课时问题提出1.在直角三角形中三边abc及锐角AB之间有怎样的数量关系 ABC abc3.对于直角三角形我们可利用上述原理进行有关计算.对于一般三角形中边和角的关系我们需要建立相关理论进行沟通这是一个有待探究的课题.2.三角形是最基
正弦定理余弦定理a 已知两角和任意一边可以求出其他两边和一角已知两边和其中一边的对角可以求出三角形的其他的边和角解:(2)若ABC是⊿ABC的三个内角则sinAsinB____代入左边得:
课题:正弦定理、余弦定理 综合运用(二)课题:正弦定理、余弦定理综合运用(二)知识目标:1、三角形形状的判断依据; 2、利用正弦、余弦定理进行边角互换。能力目标:1、进一步熟悉正、余弦定理; 2、边角互化; 3、判断三角形的形状; 4、证明三角形中的三角恒等式。课题:正弦定理、余弦定理综合运用(二)教学重点:利用正弦、余弦定理进行边角互换。教学难点:1、利用正弦、余弦定理进行边角互换时的转
违法有害信息,请在下方选择原因提交举报